チタンインプラント材の焼鈍温度が機械的性質に及ぼす影響

白鳥 徳彦

松本歯科大学 大学院歯学独立研究科 硬組織疾患制御再建学講座 (指導教員:伊藤 充雄 教授)

松本歯科大学大学院歯学独立研究科博士(歯学)学位申請論文

The influence of annealing temperature on the mechanical properties of titanium implant materials

NARUHIKO SHIRATORI

Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University (Academic Advisor : Professor Michio Ito)

The thesis submitted to the Graduate School of Oral Medicine, Matsumoto Dental University, for the degree Ph.D. (in Dentistry)

要 旨

インプラントはブラキシズム等によって疲労破 壊することが報告されており、この原因は加工歪 みによる.したがって加工歪みを取り除くことを 目的にチタン (CPTi)を400℃,600℃,800℃, 900℃の電気炉 (SLC 115, Selec)内で,40分,60 分,80分間焼鈍した.それぞれ処理した後,引張 強さ,伸び,硬さ,疲労破壊,組織観察について 検討を行った.

その結果, CPTi の引張強さは焼鈍温度が高く なると小さくなる傾向であった.また,引張強さ に対する加熱時間の影響は400℃と900℃では認め られなく,600℃と800℃では処理時間が長いほど 引張強さは小さくなった.伸びは焼鈍温度が高く なると大きくなる傾向であった.また,処理時間

に関しては焼鈍温度が低い場合,処理時間が長く なるほど伸びは大きくなった. 耐力においては 900℃以外は焼鈍温度が高く、処理時間が長いほ ど小さくなる傾向であった.弾性係数は加熱前よ りも大きくなる傾向であり、焼鈍温度、処理時間 ともに一定した影響は認められなかった.しか し、900℃に関しては処理時間が長くなるにした がって弾性係数は大きくなる傾向であった. 硬さ は、800℃までは焼鈍温度が高いほど小さくなる 傾向であり,処理時間による一定した影響は認め られなかった.900℃処理では800℃処理よりも硬 さが大きくなる傾向であった.疲労破壊は400℃ で40分処理が最も良好であった.加熱重量変化に おいては、加熱することによって重量が増加し た. 400℃と600℃処理では大差が認められなかっ たが、900℃処理が最も大きく重量の増加が認め

(2009年2月25日受付)

られた.その増加量は800℃と比較して4倍で あった.組織は800℃と900℃処理では再結晶化が 認められ,粗大化していた.疲労破壊面の観察で は結晶が微細な400℃と600℃は破断面も微細であ り,粗大化した結晶の800℃と900℃では破断面も 粗造な状態で観察された.

したがって, CPTiを用いインプラント体を加 工した場合,加工後400℃で出来るだけ短時間で 焼鈍処理を行うことによって疲労破壊を防止する ことが可能となることが示唆された.

緒 言

歯科におけるインプラント治療は年々増加して おり、そのインプラント体のほとんどは、線引さ れたチタン原材料(commercially pure titanium; 以下 CPTi と記す)を機械加工することによって 作成されている.

著者らは、CPTiを800℃以下で加熱すると、 硬さ、曲げ強さ、耐力は加熱する前よりも小さく なる傾向にあること、CPTiは、線材として加工 したとき、引張強さ、伸び、硬さが加工する直径 によって差があり、JIS に定められた規格の範囲 を逸脱することがあることをすでに報告した¹⁾. これは、加工したときの加工歪みが残留している ためと考えられる.さらに、田村らによると²⁾市 販インプラントのほとんどには加工によって生じ たスジ状の組織が認められ、加工歪みが残留して いるものと思われる.

CPTiのインプラント体を,加工歪みが残留したまま植立すると,塑性変形能が減少しており容易に疲労破壊することが考えられる. Goodacreらによると,インプラント体の約3%が破折していると,報告されている³.破折の原因は記載されてないが,インプラント体の材質,術式によるもの,あるいは,これらの両者に起因しているものと考えられる.

伊藤らは CPTi を900℃以上に加熱すると, 硬 さ, 曲げ強さは加熱前の CPTi よりも大きくなる が, 靭性が著しく減少するために実用的な熱処理 ではないことを報告している⁴. また, チタンは 加熱することによって, 酸化膜を形成する. この 酸化被膜上に合着材を接着させると接着力が向上 することや, 過酸化水素溶液で処理することに よっても, 接着力は向上することが報告されてい る⁵⁻ⁿ.しかし,CPTiの熱処理と疲労破壊の関係 についてはいまだ報告されていない.

本研究は、線引加工で作製され、市販されてい る CPTi を焼鈍処理し、加熱重量変化、引張強 さ、伸び、硬さ、疲労破壊、組織観察について、 それぞれに検討を行い、インプラント材として最 適な機械的性質を得るための熱処理条件について 検討した.

実験材料および方法

1. 材料

実験に使用した CPTi は, 直径 5 mm, JIS 第 2 種相当(神戸製鋼)を, 長さ100 mm に切断機 (MINITOM, マルトー)にて, 注水下で切断し 用いた. なお, 加熱重量変化の測定と疲労試験に は厚さ1 mm の CPTi 板(神戸製鋼)を用いた. 2. 焼鈍処理

長さ100mmに切断したCPTiを,400℃,600℃, 800℃,900℃の電気炉 (SLC 115, Selec)内で,40 分,60分,80分間,それぞれに大気中で加熱を 行った後,炉外にて放冷した(以下,熱処理と記 す).

3. 加熱重量変化の測定

熱処理による酸化の影響を検討するために,加 熱重量変化の測定を行った.板状のCPTiを約 0.05gに切断し,加熱重量測定装置(TGA-50, 島津)を用いて,昇温速度10℃/分の条件にて 400℃,600℃,800℃,900℃まで大気中で加熱 し,各温度において,40分,60分,80分間の係留 を行い,試料重量の変化を測定した.測定は各条 件において3回行った.

4. 引張試験

各熱処理後の CPTi を,引張試験機(IS 5000, 島津)を用いて,速度1mm/分の条件で引張試 験を行った.試験結果から,引張強さ,耐力,弾 性係数,伸びを算出した.試料の歪み量はクロス ヘッドの移動距離から求め,耐力は0.2%の塑性 歪み量から求めた.測定は各条件7本の試験片を 用いて行った.

5. 硬さ試験

硬さの測定は,熱処理前の引張試験片を長さ20 mmに注水下で再切断し,引張試験片と同様に 熱処理を行った.各熱処理後の平均的な硬さを検 討するために,ロックウエル硬さ計(ORK-A, 明石)を用いBスケールにて3個の試験片の3ヶ 所について硬さの測定を行った.

さらに,径方向の部位による硬さについて検討 するためにビッカース硬さの測定も行った.ビッ カース硬さ用の試験片は,熱処理後の試験片を中 央部において長さ10mmに注水下にて切断し, 光重合型樹脂(アクリル・ワン,マルトー)を用 いて包埋固定を行った.包埋固定後,研磨機

 (ECOMET 3, Buehler)を用いて研磨を行い、 アルミナ5 μmにてバフ研磨を行った. 測定に は、ビッカース硬さ計(HMV 2000, 島津)を用 い、荷重100gにて表層部、中間部、中心部につ いて、各5ヶ所の硬さ測定を行った.

6. 疲労破壊試験

疲労試験は、肉厚1.0mm,長さ30mm,幅3 mmのCPTi板に深さ0.5mm幅2.0mmの切れ 込みを入れ熱処理を施した後、疲労破壊測定機 (テクノアーク)を用い、切れ込みの下端を固定 し、固定点から高さ3mmの点に0.25mmのひ ずみをあたえ測定した.1条件7個の試験片を用 いて破断までの回数を測定した.

7. 組織観察

組織観察には、各熱処理を行った試験片を切断 機(MINITOM,マルトー)を用い、注水下にお いて長さ5mmに切断後、光重合型樹脂(アク リル・ワン、マルトー)により包埋固定し、研磨 機(ECOMET3, Buehler)で0.05µmのアルミ ナ粉末(Buehler)を用い通法に従って研磨を 行った.研磨面はエッチング液(CHEMI POL-ISH, 松風)を用いてエッチングを行い、金属顕 微鏡(VANOX-TAH2,オリンパス)にて観察 を行った.また、レーザー顕微鏡(OLS 3000, 島津)を用い(図1)引張試験後と疲労破壊後の 試験片の破断面を観察した.

図1:レーザー顕微鏡 (OLS 3000, 島津)

8. 統計処理

各測定値を EXCEL (マイクロソフト) を用 い,二元配置分散分析を行った.その結果に基づ き,99%の信頼限界については,P<0.01,95% の信頼限界については,P<0.05と文中に表記し た.

結 果

1) 加熱重量変化

図2に加熱重量変化の測定結果を示す.400℃ では+0.034%で加熱時間による変化は認められ なかった.600℃では、+0.042%~+0.058%と加 熱時間による影響がわずかに認められた.800℃ では、+0.3%~+0.65%と加熱時間とともに重 量増加していた.900℃では、+0.8~+2.91%と 加熱時間が長くなるほど重量は増加した.ま た,600℃までの重量増加は僅かであったが、 800℃からは急激に増加し、900℃-80分では400℃ の約90倍に達した.測定値を分散分析した結果、 熱処理温度が有意に加熱重量変化に寄与 (p< 0.01)していた.

2) 引張強さ

図3:CPTiの熱処理温度,時間と引張強さとの関係を示す.

各温度で40分,60分と80分間熱処理した CPTi の引張強さの測定結果を図3に示す.処理前の CPTiの引張強さは約540 MPa であり、400℃で 処理した CPTi の引張強さは熱処理時間による差 がほとんどなく, 517~519 MPa であった. 600℃ で40分処理した CPTi の引張強さは約480 MPa, 60分処理では、約472 MPa,そして80分処理では 約470 MPaであった.800℃で40分処理では約 430 MPa, 60分では、約425 MPa, そして、80分 処理では約420 MPa であった。900℃処理では、 熱処理時間による差がほとんどなく, 411~412 MPa であった. 引張強さは、熱処理温度が高い ほど減少する傾向であったが、800℃までは比較 的急激に減少し、800℃以上では緩やかに減少し ていた.これらの測定値を分散分析した結果,加 熱温度が有意(p<0.01)に寄与していた.

3) 伸び

図4に伸びの測定値を示す.熱処理前のCPTi の伸びは、14.3%であり、400℃で40分処理では 16.6%、60分処理では17.2%、そして80分処理で は18.5%であった.600℃で40分処理では19.5%、 60分では19.9%、そして80分処理では20.7%の伸 びを示した.800℃で40分処理では23.6%、60分処 理では23.3%、そして80分処理では23.0%の伸び

図4:CPTiの熱処理温度,時間と伸びとの関係を示す.

図5:CPTiの熱処理温度,時間と耐力との関係を示す.

であった. つぎに900℃で40分処理では43.6%, 60分処理では44.1%, そして80分処理では38.8% の伸びであった. 伸びは, 400℃では熱処理時間 とともに増加したが, 600℃以降では, 熱処理時 間には影響されず, 熱処理温度と共に増加し, 900℃で急激に大きくなった. これらの測定値を 分散分析した結果, 熱処理温度が伸びに有意に寄 与 (p<0.01) していた.

4) 耐力

図5に耐力の測定結果を示す.熱処理前の CPTiの耐力は、425 MPaであり、400℃で40分 処理では、約390 MPa, 60分処理では、約263 MPa, そして80分では235 MPa であった. 600℃ で40分処理では、約296 MPa, 60分と80分処理で は約266 MPa であった. 800℃で40分処理では, 約253 MPa であり、60分処理では約230 MPa, そして80分処理では約180 MPaであった. つぎ に900℃で40分処理では約166 MPa であり, 60分 処理では、156 MPa,そして80分処理では約166 MPaであった、耐力は、熱処理時間40分では、 熱処理温度の上昇とともに減少していたが、熱処 理時間が長くなっても900℃処理のものは変化が 認められず、60分では400℃、600℃、800℃がほ ぼ同一の値を示し,80分では400℃,600℃のグ ループと800℃,900℃のグループに二分した状態 であった、これらの測定値を分散分析した結果、 熱処理温度が耐力に有意に寄与(p<0.01)して いた.

5) 弾性係数

図6に弾性係数の測定値を示す.熱処理前の CPTiの弾性係数は,約19 GPaであり,400℃で 40分処理した CPTiの弾性係数は,約30 GPa,60 分処理では約26 GPa,そして80分処理では約20

図6:CPTiの熱処理温度,時間と弾性係数との関係を示す.

GPa で あ っ た. 600 °C °C 40分 処 理 で は,約27 GPa, 60分処理では約25 GPa, そして80分処理 では約26 GPa であった. 800 °C °C 40分処理では約 27 GPa であり,60分処理では、26.5 GPa, 次い で80分処理では約25 GPa であった.900 °C °C 40分 処理では24.5 GPa,60分処理では約26 GPa,そ して80分処理では約28 GPa であった.弾性係数 は,熱処理温度400 °C °C は,処理時間が長くなる に従って減少傾向を示したが,他の温度では熱処 理時間による影響は認められなかった.測定値を 分散分析した結果,熱処理温度が弾性係数に有意 に寄与 (p<0.01) する結果であった.

6) 硬さ試験

(1) ロックウエル硬さ

図7にロックウエル硬さ計の測定結果を示す. 熱処理前の硬さは、約80 H_RB であり、400℃で40 分、60分と80分処理では、約80 H_RB と差が認め られなかった.600℃で40分処理の CPTi の硬さ は約77 H_RB、60分と80分処理では約78 H_RB で あった.800℃で40分処理の硬さは約74 H_RB であ り、60分と80分処理では約71 H_RB であった. 900℃で40分処理の硬さは約78 H_RB、60分と80分

図7: CPTi の熱処理温度,時間と硬さ(ロックウエル硬さ 計)との関係を示す.

(ビッカース硬さ計)との関係を示す.

処理では約79 H_RB であった. ロックウエル硬さ は,熱処理温度800℃までは減少したが,900℃で 再び上昇した. また,800℃でも熱処理時間60分 以上では,硬さは変化しなかった.測定値を分散 分析した結果,熱処理温度が有意に寄与 (p< 0.01)していた.

(2) ビッカース硬さ

表層,中間,中心の各部位におけるビッカース 硬さの測定結果を図8~10に示す.

図8は表層部の測定結果である.熱処理前の硬 さは表層204.1 Hv,400℃40分で207.4 Hv,60分, 209.8 Hv,80分 で202.3 Hv,600℃で は40分, 177.3 Hv,60分,225.1 Hv,80分,176.5 Hv, 800℃では,40分,168.7 Hv,60分,160.2 Hv,80 分,173.6 Hvであった.900℃では,40分,170.8 Hv,60分.356.2 Hv,80分,194.4 Hvであった. 測定値を分散分析した結果,熱処理温度,熱処理 時間ともに有意な差は認められなかったが, 900℃60分,80分では他の温度と比べ,データの バラつきが大きかった.

図9は中間部の測定結果である.熱処理前の硬 さは、196.8 Hv で400℃では40分186.3 Hv,60分

図9:中間部における CPTiの熱処理温度,時間と硬さ (ビッカース硬さ計)との関係を示す.

図10:中心部における CPTi の熱処理温度,時間と硬さ (ビッカース硬さ計)との関係を示す.

で178.5 Hv, 80分で184 Hv であった. 600℃では 40分, 161.9 Hv, 60分, 173.4 Hv, 80分, 177.3 Hv で あ っ た. 800℃で は40分162.8 Hv, 60分, 167.8 Hv, 80分で151.0 Hv であった. 900℃では 40分, 154.4 Hv, 60分, 145.5 Hv, 80分, 149.9 Hv であった. 測定値を分散分析した結果, 熱処 理温度, 熱処理時間ともに有意な差は認められな かったが, 温度の上昇とともに低下する傾向に あった.

図10は中心部の測定結果である. 熱処理前の硬 さは、186.4 Hv で、400℃で40分、177.0 Hv、60分、 182.4 Hv、80分処理では、175.6 Hv であった. 600℃では、40分、166.8 Hv、60分、163.6 Hv、80 分、166.2 Hv であった. 800℃では、40分、158.1 Hv、60分、157.2 Hv、80分、150.6 Hv であった.

900℃では、40分、144.3 Hv、60分、145.2 Hv、80 分、142.6 Hv であった. 測定値を分散分析した 結果,熱処理温度が有意に寄与(p<0.01)して いた.また,中心部に近くなるに従い硬さは減少 した.

7) 疲労破壊試験

各温度で40分間熱処理した CPTi の疲労破壊の 結果を図11に示す.熱処理前の CPTi は,78.2× 10³回で疲労破壊した.400℃では112.6×10³回, 600℃では59.0×10³回,800℃では57.1×10³回, 次いで900℃では30.8×10³回で疲労破壊した.疲 労破壊に至るまでの荷重回数は400℃では増加し たが,600℃以上では温度の上昇とともに減少し た.測定値を分散分析した結果,熱処理温度が有 意に疲労破壊に寄与(p<0.01)していた.

8) 組織観察

試験片表層部の金属顕微鏡による組織観察の結 果を図12に示す.図12 a は熱処理前の CPTi の組 織である.均一で微細な結晶粒が観察されてい る.図12 b は400℃で処理した CPTi の組織であ る.40分,60分と80分処理では差が認められな かった.また処理前の組織とも差は認められな かった.図12 c は600℃で処理した CPTi の組織 であり,400℃の組織との差も認められなかっ た.図12 d と図12 e は800℃と900℃で処理した

図12:金属顕微鏡による組織を示す.

図13:レーザー顕微鏡による疲労破壊した破断面の組織を示す.

組織を示す.結晶粒が大きく成長している状態が 観察された.

図13に疲労破壊した破断面の観察結果を示す. 図13 a は加熱前,図13 b は400℃,図13 c は600℃ 処理の破断面で,微細な状態を呈しているが図13 d,800℃と図13 e の900℃処理の破断面は粗造な 状態が観察された.

考 察

著者らは, CPTiの圧延板を熱処理し,曲げ強 さの測定を既に行っている. その結果,曲げ強さ は加熱前の CPTi 板よりも,400℃処理では2.5% の減少を示し,600℃処理では約11%,そして 800℃処理では約21%の減少率であった¹⁰.曲げ強 さにかぎらず,耐力,硬さについても減少を示し た¹⁰. また,組織観察においては400℃と600℃で は,加熱前の組織と差が認められなかった が,800℃処理では結晶が粗大化し,再結晶化し た状態が観察された¹⁰.

本研究は、歯科用インプラント体に、咀嚼とブ ラキシズムにより繰り返し作用する力に対する CPTiの疲労強度の向上を目的に行った.

まず,熱処理による酸化の影響を検討するため

に重量変化の測定を行った.その結果,400℃で は0.034%,600℃では0.042%~0.058%,800℃ では0.3%~0.65%,900℃では0.8~2.91%の増 加と,600℃までは大きな重量変化は認められな かったが,800℃以上においては温度の上昇と係 留時間の増加に伴い急激に重量が増大した.この 結果は,800℃以上の温度において CPTiの酸化 が急激に進むことを意味しており,800℃以上の 温度では,CPTiの酸化を避けるために無酸素状 態における熱処理の必要性が示唆される.これに 対し600℃以下の温度では,大気中における容易 な熱処理が可能であると考えられる.

機械的性質では,熱処理前の引張強さ約540 MPaに対して,400℃で2~4%の減少,600℃ では11~13%の減少,800℃では20~23%の減 少,そして900℃では約24%引張強さが減少し た.加熱温度が高いほど引張強さが大きく減少す る結果であった.また,各温度における加熱時間 の影響は,600℃,800℃と900℃処理においては 時間が長くなるにしたがって,引張強さが減少す る傾向が認められた.600℃までは組織変化が認め られないことから,600℃の引張強さの減少は加 工歪みが除去されたためと考えられる⁸. 一方800℃と900℃では結晶粒の粗大化が生じて おり,このことが原因して引張強さは減少したも のと考えられる.

伸びについては、熱処理前が14.3%、400℃で は2.3~4.2%大きくなる傾向であり、600℃では 5.2~6.4%増加し、800℃では8.7~9.3%増加し、 900℃では24.5~29.3%の大きな増加が認められ た.加熱温度が高くなるほど伸びは大きくなり、 処理時間に関しては400℃と600℃では時間が長く なると伸びは大きくなった。引張強さと同様に 600℃までは加工歪みが除去されたため、800℃以 上では再結晶化により結晶粒が大きくなり、伸び が増加したものと考えられる.

耐力は,熱処理前が425 MPa であり,400℃で は35~190 MPa 減少,600℃では129~159 MPa 減 少,800℃では172~245 MPa 減少,そして900℃ 処理では259~269 MPa の減少であった.熱処理 温度が高く処理時間が長いほど耐力の減少は大き くなった.結晶粒が大きく成長している800℃と 900℃(図12)の耐力は大きく減少する傾向であっ た.

弾性係数は熱処理前では約19 GPa であり,加 熱温度が高くなるにしたがい増加した.熱処理時 間による有意な差は認められず,一定の傾向も認 められなかった.しかし CPTi を加熱することに よって弾性係数は処理前よりも増加する傾向が得 られた.加熱することによって CPTi の表層に酸 素,窒素の拡散層がわずかではあるが生じる.こ の拡散層によって,最初の荷重と歪みの立ち上が りの勾配が大きくなり弾性係数が増加したものと 考えられる.

熱処理前の CPTi のロックウエル硬さは80.3 H_RB であり、400℃処理ではほとんど差がなく、 600℃処理では 2 ~ 3 H_RB 減少し、800℃処理で は 6 ~ 9 H_RB 減少し、最も軟らかくなったが、 900℃処理では 1 ~ 2 H_RB の減少を示したが、こ の結果は600℃よりも硬くなった。

一方,中間部,中心部におけるビッカース硬さ の傾向は,ロックウエル硬さの傾向とは明らかに 異なっている.ビッカース硬さは試料中間部と中 心部においては熱処理温度が上昇するに従い低下 している,しかし試料表層部では変動が大きく (特に900℃)一定した傾向は認められない.し たがって,平板を測定したロックウエル硬さの 900℃における上昇は,表面層の酸化による影響 を受けたものと考えられる.

つまり,800℃の酸素,窒素の拡散層はわずか であり,ロックウエル硬さに影響するほどではな く,内部の歪みが取り除かれた状態と結晶の粗大 化に影響されて,最も軟らかくなり,900℃処理 では,CPTiが酸化し重量が増加するとともに, 表層から酸素,窒素が内部へ拡散し,固溶により 格子歪みが生じ,800℃よりも硬さが大きく上昇 したものと思われる^{9,10}.

疲労破壊の測定結果では、900℃が最も早い時 期に破断しており、次いで800℃処理と600℃処理 が破断した. 400℃処理は処理前よりも疲労破壊 に至るまでの繰り返し荷重回数が多く、疲労強度 の増大がみられた. 組織観察の結果, 800℃と 900℃で加熱した破断面は、粗大化した結晶内に ストライエーションが認められており(図13d. e),熱処理前と400℃,600℃で熱処理した試験片 の破断面では、微細な結晶粒内でストライエー ションが認められた(図13b, c). したがって, 結晶粒が微細なほど疲労破壊しづらいものと考え られた. 600℃と800℃で熱処理した場合の CPTi の疲労破壊はほとんど同じ荷重回数で破断してい る.900℃処理では600℃および800℃と比較して 明らかに荷重回数が少ない状態で破断している. この原因は900℃処理では、酸素、窒素の拡散層 の占める範囲が大きくなり,破断しやすくなった ものと考えられる.

また, CPTi (タイプ1~タイプ4) は疲労破 壊に対して特に酸素の含有量が影響するとされて いる¹¹⁾. 鋳鋼などは表層に硬い層があると疲労破 壊しづらくなることが報告されているが, 今後 CPTi の, 表層の硬化層と内部の軟化層との比率 が, どの程度の比率で最大の疲労破壊強度が得ら れるかについて検討する必要があると考えられ た¹²⁾.

図14は,疲労破壊に至った荷重回数と耐力,弾 性係数,伸び,引張強さ,ロックウエル硬さの相 関を取ったものである.なお,各数値は一つの図 に収まるよう,横軸の縮尺を適宜に変更してあ る.耐力と引張強さでは有意に正の相関(R²= 0.7302,0.6679)が,伸びでは有意に負の相関 (R²=0.6114)が認められる.一般に,耐力が増 大すると引張強さも増大し,伸びは逆に減少する

図14:疲労破壊に至る荷重回数と,耐力,弾性係数,伸び,引張強さ,ロックウエル硬さとの関係を示す(各数値は同一の図に収まるように縮尺を変更してある).

ことから,できる限り耐力の落ちない温度条件に おいて,加工歪みを除去することが疲労破壊強度 を向上させるのに重要であると考えられた.

ただし,疲労試験に供した試験片は薄く(切り 込み部厚さ0.5mm)実際にインプラント製作に 用いられる原料とは異なっている.さらに,加工 歪みにも原材料の歪みと機械加工時の歪みが存在 し,でき得るならば1回の熱処理によって歪みを 除去できることが望ましい.

これらの観点から、インプラント体と同様な試 験片を用いて更なる検討が必要であるが、CPTi を用いインプラント体を加工した場合、加工後 400℃で出来るだけ短時間で焼鈍処理を行うこと により、疲労破壊を防止できる可能性が示唆され た.

もちろん、口腔内で繰返される咀嚼やブラキシ ズムによってどの程度の力がインプラント体に負 荷され、疲労破壊が生じるかは未だ明らかにされ ていない.さらにインプラントの寸法や設計に よっても疲労破壊に至る力は大きく異なって来 る.したがって工業製品のように安全率を考慮し た材料強度の明確な基準を示すことはできない が、加工したままの材料の変形能は、加工前の材 料の変形能と比較して、加工歪みが残留し小さく なっていることは明らかであり、加工歪みを熱処 理によって取り除くことは、疲労破壊を起こさな い安全なインプラント体を製作するために必須な ものであると思われる.

結 論

CPTi は製造時の加工歪みが残留しており,こ の残留する歪みによってインプラント体の疲労破 壊強度が左右されることが考えられる.したがっ て,純チタンを焼鈍処理し,残留歪みの除去を行 い,焼鈍温度と引張強さ,伸び,硬さ,弾性係数, 疲労破壊強度,加熱重量変化,金属組織との関係 について検討した結果,以下の結論が得られた.

- CPTiは、加熱することによって重量が増加 した.400℃と600℃処理では大差が認められな かったが、900℃処理では大きな重量の増加が 認められた.その増加量は800℃と比較して4 倍であった.
- CPTiの引張強さは焼鈍温度が高くなると小 さくなる傾向であった.また,引張強さに対す る加熱時間の影響は400℃と900℃では認められ なく,600℃と800℃では処理時間が長いほど引 張強さは小さくなった.

3. CPTiの伸びは焼鈍温度が高くなると大きく

なる傾向であった.また,処理時間に関しては 焼鈍温度が低い場合,処理時間が長くなるほど 伸びは大きくなった.

- 4. CPTiの耐力は900℃以外の温度では焼鈍温 度が高く、処理時間が長いほど小さくなる傾向 であった。
- 5. CPTi の弾性係数は加熱前よりも大きくなる 傾向であり,焼鈍温度,処理時間ともに一定し た影響は認められなかった.しかし,900℃に 関しては処理時間が長くなるにしたがって弾性 係数は大きくなる傾向であった.
- CPTiの硬さは、800℃までは焼鈍温度が高いほど小さくなる傾向であった.処理時間の一定した影響は認められなかった.900℃処理では800℃処理よりも硬さが大きくなる傾向であった.
- CPTiの疲労破壊は400℃で40分処理が最も 良好であった.
- CPTiの組織は800℃と900℃処理では再結晶 化が認められ、粗大化していた.疲労破壊面の 観察では結晶が微細な400℃と600℃は破断面も 微細であり、粗大化した結晶の800℃と900℃で は破断面も粗造な状態であった.
- 9. CPTiには原材料加工時に生じた加工歪みが 残っており、インプラント体の疲労破壊を防止 するためには焼鈍処理が必須ある.

以上,チタンインプラント材の焼鈍温度が機械 的性質に及ぼす影響について検討した結果,イン プラントに使用されるチタン原材料には原材料成 型時の加工歪みが残っており,インプラント体の 疲労破壊を防止するためには焼鈍処理が必須ある ことが判明した.

文 献

1)田中 悟,高橋恭彦,田島伸也,白鳥徳彦,伊藤

充雄(2004)インプラント材としてのチタンの 熱処理と物性の関係.日口腔インプラント誌 17:202-8.

- 2) Tamura K, Yoshida T, Yanase T, Takahasi Y, Nagasawa S and Ito M (2007) Hardness and Metallographic Structure of Commercial Titanium Wires and Implants. The 2nd international Meeting on Titanium in Dental Technology: 94.
- 3) Goodacre CJ, Bernal G, Rungcharassaeng K and Kan JY (2003) Clinical complaints and implant prostheses. J Prosthet Dent 90: 121–32.
- 4)伊藤充雄,原基,塩谷晴重,興秀利,山岸 利夫(1992)生体材料に関する研究(その3)-チタンの表面処理について-.歯材器 11:216-24.
- 5) 青山真理子(1994) チタン酸化処理が歯科合着 用セメントとの接着に及ぼす影響.昭和誌 14: 387-400.
- 6)上條 都(2004)過酸化水素処理したチタン表 面への接着性レジンの接着.歯材器 23:508-19.
- 7) Yoshida T, Terashima N, Niiro T, Nagasawa S, Ito M, Yagasaki H, Oshida Y and Agarwal P (2005) Bond strengths of resin-cement to H_2O_2 -treated titanium plates. Dent Mater **21**: 1087–97.
- Ralph W (1981) Phillips Science of Dental Materials, 9th Edition, 267. W.B.Sunders Company, Philadelphia.
- 9)石田四郎,和田次郎(1964)新制機械材料.25
 版.167.オーム社.東京.
- 10) 森永卓一,室町繁雄,嵯峨敏郎,財満鎮雄
 (1964) 金属材料学,19版,259. 朝倉書店,東京.
- Ratner BD, Hoffman AS, Schoen FJ and Lemons JE (2004) Biomaterials Science, Second Edition, 148. El sevier Academic Press, New York.
- 12) Hayden W, Moffatt WG and Wulff J (1965) Mechanical Behavior, First Edition, 157, John Wiley & Sons.Inc., New York.

60