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【目的】  
線維芽細胞増殖因子（FGF）は，ウシ下垂体から精製された成長因子であり，種々の

細胞の増殖や分化に関与する．bFGF（FGF-2）は軟骨組織の恒常性維持や成長発育

に重要なであり，下顎頭でも正常組織だけでなく腫瘍細胞の増殖促進に関与すること

が知られている．ラット膝関節への bFGF 局所投与実験はあるが，下顎頭における bFGF
の局所作用に関する報告は知られていない．そこで，本研究では新生児マウスの下顎

頭における bFGF の局所投与効果を検討した． 
【方法】  

実験動物は，生後 0 日齢の ddY 系マウス 40 匹を用いた．実験群は，1μg/μl の

rhbFGF を生後 1 日目，2 日目，3 日目の 3 回（0.1μl/回）に分けて左側下顎頭に総量

0.3μg 投与した．対照群は，右側下顎頭に同量の生理食塩水を局所投与した．投与 1
日後，4 日後，7 日後および 14 日後に各群 10 匹を屠殺し，4%パラホルムアルデヒドに

浸漬固定した．通法に従って 10％EDTA で脱灰後，パラフィン包埋し，3μm の前頭断連

続切片（約 800 枚／ブロック）を作製し，20 枚毎に HE 染色を行った．下顎頭が最大幅

径となる標本を含む 20 枚の連続切片を用いて PCNA 免疫染色を行った．HE 標本では

下顎頭の最大幅径，増殖層の厚さおよび下顎頭の長さに対する増殖層の長さの比率を

求めた．PCNA 免疫染色標本では，増殖層の細胞数に対する PCNA 陽性細胞の割合

を求めて増殖率（PI）とした．形態計測と陽性細胞数の抽出には Motic® Images Plus 2.2 
ver.2.1.2 を用いた．これらの結果は，Wilcoxon signed-rank test で対照群と実験群を比

較した．群間の多重比較は Kruskal-Wallis test を用い，Steel-Dwass test で事後検定し

た．全ての統計解析は R で行い p<0.05 を有意差ありとした． 
【結果】  

１．組織学的所見：対照群と実験群の下顎頭に明らかな構造異常はみられなかった．

投与 1 日後では，実験群で増殖層の著しい肥厚が確認された．投与後 4 日でも同様に

増殖層の肥厚を認め，さらに軟骨細胞と肥大軟骨細胞の数は増加し，最大幅径と垂直

方向の増加があった．投与 7 日後の対照群では頭頂から骨化層までの垂直距離が短

縮し、骨化層先端部は下顎頭方向へ移動していた．しかし，実験群では対照群に比較

して軟骨組織の全体的な厚さは依然として厚かった．投与後 14 日では，実験群でも対

照群同様に最大幅径の増加と骨化の亢進があり，骨化層の前線は頭頂方向へ移動し

ていた． 
２．免疫染色所見：PCNA 陽性細胞は主に増殖層に分布し，対照群に比べ実験群で

陽性率が高い傾向を示した．投与後 7日までは陽性細胞は増加したが，実験14日目で

陽性細胞は減少していた． 
３．形態計測解析：対照群の最大幅径は 408.0±128.3μm（1 日後），512.8±25.5μm（4

日 後 ） ， 629.4±36.8μm （ 7 日 後 ） ， 743.3±78.7μm （ 14 日 後 ） で あ り ， 実 験 群 は ，

533.4±86.1μm （ 1 日 後 ） ， 512.8±25.5μm （ 4 日 後 ） ， 722.6±56.7μm （ 7 日 後 ） ，

810.8±90.8μm（14 日後）だった．最大幅径は対照群と実験群ともに徐々に増加する傾
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向を示し，統計学的に有意に実験群の最大幅径が大きかった（p<0.01）．増殖層の厚み

は，対照群で 117.1±4.4μm（1 日後），124.5±6.0μm（4 日後），136.5±3.4μm（7 日後），

129.9±2.4μm（14 日後）であり，実験群は 155.0±6.7μm（1 日後），195.2±8.2μm（4 日後），

175.8±10.3μm（7 日後），142.1±8.0μm（14 日後）だった．対照群は７日目まで徐々に増

加した後に減少傾向を示し，実験群は 4 日目に最大値を示し徐々に減少する傾向を示

した．実験群の４日目が有意に他群に比べ厚かった．増殖層の厚さの比率は，対照群

で 50.5±2.0%（1 日後），49.8±3.0%（4 日後），49.4±1.0%（7 日後），36.2±1.0%（14 日後）

であり，実験群で 60.4±1.0%（1 日後），69.7±3.0%（4 日後），58.6±4.0%（7 日後），

37.8±2.0%（14 日後）だった．対照群は，７日目まで変化は無く 14 日目に値が小さくなっ

た．実験群は，増殖層の厚さと同様に４日目に最大値を示し，その後減少した．実験群

の４日目の値は他群に比べ有意（p<0.001）に高値であった． 
４．増殖率解析：ＰＩは，対照群で 39.7±3.0%（1 日後），43.2±1.0%（4 日後），

47.1±3.0%（7 日後），43.0±3.0%（14 日後）で，実験群では 50.2±3.0%（1 日後），

68.9±4.0%（4 日後），50.5±3.0%（7 日後），50.4±2.0%（14 日後）だった．対照群の増殖

率は１日目から徐々に増加傾向を示し 7 日目に最大となった．実験群は，４日目に最大

値を示し統計学的にも有意（p<0.001）に高値だった． 
【考察】  

増殖層の厚さと増殖率は，対照群が７日目，実験群では４日目に最大となった．これ

らは rhbFGF が間葉系細胞の増殖を促進した結果と考えられた．しかし，rhbFGF は生体

内で 24 時間以内に消失するので，実験群が４日目で効果が最大となる結果と矛盾する．

生体内では bFGF はｂFGF と TGF-β1 の発現を増強する。さらに TGF-β1 もｂFGF の発

現を増加することから，成長因子の相乗作用により効果時間が延長し，投与後４日目に

最大の効果が現れたものと考えられた．また，実験群の軟骨細胞の層が厚く，線維層か

ら骨化層先端までの距離が長かったことから，rhbFGF は軟骨細胞や肥大軟骨細胞へ

の分化を促進するが，軟骨細胞の最終分化を抑制している可能性が示唆された．本研

究は，rhbFGF の局所投与が授乳期マウスの下顎頭間葉系細胞の増殖を促進し得るこ

とを示した． 
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Abstract: To elucidate the effect of local bFGF administration, we administered a total of 0.3μg rhbFGF was to
the left mandibular condyle by three injections of 0.1μl bFGF solution for 3 days after birth. The contralateral
condyles with three injections of 0.1μl physiologic saline served as controls. Serial sections including the
widest condyle were evaluated with H-E staining and immunostaining for PCNA. The maximum width of
condyle, proliferative zone thickness, proliferative zone thickness ratio and proliferating index were analyzed
using image analysis software after digital image capture of H-E stained sections. All condyles were composed
of fibrous, proliferative, maturation and hypertrophic cell zones without significant abnormal findings.
Experimental condyles demonstrated a markedly thickened proliferative zone compared with that of the controls
at 1 day after the injection. At 4 and 7 days, chondrocytes and hypertrophic chondrocytes of the experiments
increased in thickness. However, at 14 days after the injection, both the controls and experiments showed
similar features with an upward shift of ossification front and active formation of bone trabeculae.
Morphometrically, all values of experiments were significantly higher than those of the controls. Especially at
4 days after the final injection, proliferative zone thickness and proliferative index values of the experiment
reached a peak and were nearly 1.6-fold higher than those of the control, which were statistically significant
compared to other experimental groups. Despite the short half-life of rhbFGF, its effect seems to be prolonged
by synergic actions of growth factors such as bFGF or TGF beta1. In conclusion, we showed that local
administration of bFGF was feasible for accelerating mesenchymal cell proliferation of mandibular condyles of
newborn mice in the lactation period after birth.

Key words: Basic FGF, Condyle development, Local administration, Newborn mice
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Introduction
Fibroblast growth factor (FGF) is a growth factor that was

first purified as a polypeptide of 13,300 molecular weight from
bovine pituitary gland in 1970s1). FGF isolated under non-acidic
conditions was referred to as basic pituitary FGF possessing
mitogenic activity2). However, FGFs are now recognized as
polypeptide growth factors of 150 to 250 amino acid residues
with myriad biological activities and expression profiles in
variable kinds of cells or tissues. These are encoded by 22 kinds
of Fgf genes (Fgf1 to Fgf23), while FGF receptors are translated
from four members of Fgfr gene domain. Most FGFs are secretion
proteins that bind to FGFRs and induce the phosphorylation3, 4).
This family, binding heparin and heparan sulfate, regulates
articular cartilage homeostasis and controls the growth,

differentiation, migration and survival of a wide variety of cell
types. In this family, basic fibroblast growth factor (bFGF) also
known as FGF-2 regulates mesenchymal cell proliferation but not
epithelial cell5). This regulator plays an important role in cartilage
matrix homeostasis6) and bone growth and development7). In
mandibular condyle, bFGF modulates cartilage proliferation not
only in normal condylar cartilage cells8) but also in neoplastic
cartilage cells such as in synovial chondromatosis9). In addition,
this factor seems to be physiologically involved in the alteration
of the mandibular condylar cartilage due to lateral movement of
the mandible10).

Clinically, bFGF has been applied to various diseases. For
example, it is effective in wound healing and has been applied in
cases of plastic surgery11). There has been considerable research
on the treatment of articular disorders. Although the trial of bFGF
injection into rat knee joints had been reported by Shida and his
coworkers12), there is no in vivo investigation of the effect on local

293

Correspondence to: Dr. Hiromasa Hasegawa, Department of Oral Pathol-
ogy, Matsumoto Dental University School of Dentistry, 1780 Hirooka-
Gobara, Shiojiri, 399-0781 Japa; Tel: +81-263-51-2092; Fax:+81-263-51-
2093; E-mail: hasegawa@po.mdu.ac.jp

Journal of Hard Tissue Biology 22[3] (2013) p 293-300
                                          © 2013 The Hard Tissue Biology Network Association

    Printed in Japan,  All rights reserved.
CODEN-JHTBFF, ISSN 1341-7649



J.Hard Tissue Biology Vol. 22(3):293-300, 2013

bFGF injection into mandibular condyles. Our goal of current
study is to elucidate the effect of local bFGF administration on
newborn mouse condyles.

Materials and Methods
Animal and experimental preparations

Forty newborn ddY mice (Japan SLC Inc. Hamamatsu, Japan)
were divided into four groups (10 /group). Mice weighed
approximately 1 g at birth and 6 g or more at 2-weeks of age.
Prior to experiments, we prepared handmade micro-syringes that
enabled us to eject 0.1 μl solution per one drop using a NanoPass®

tapered 33 gauge needle (Terumo, Tokyo, Japan). To confirm the
position of the needle tips and distribution of injected solution,
3D micro-CT (R mCT, Rigak, Tokyo, Japan) images were taken
before and after subcutaneous injection of contrast medium
(Iopamiron® Inj., Bayer Yakuhin, Ltd., Tokyo, Japan).

Experimental design
Ten μg of recombinant human basic fibroblast growth factor

(rhbFGF, PROGEN Biotechnik GmbH, Heidelberg, Germany
was reconstituted in 10 μl distilled water. Final concentration of
bFGF solution was 1 μg/μl. As shown in Fig. 1, total 0.3 μg of
rhbFGF was administered to the left mandibular condyle by three
injections of 0.1 μl bFGF solution for 3 days after birth. The
contralateral, right condyle received three injections of 0.1 μl
physiologic saline. The left and right mandibular condyles served
as experiments and controls, respectively. The new bone mice were
kept in an air-conditioned room with controlled temperature at
24±1ºC and fed with their mother, freely taking solid feed (Japan
SLC Inc. Hamamatsu, Japan) and water. The ethics committee on
laboratory animals of Matsumoto Dental University approved this
study.

Preparation and selection of histological sections
Ten mice of each control and experimental group were

euthanized at 1, 4, 7 and 14 days after the final injection. Resected
specimens were routinely treated after fixation in 4%
paraformaldehyde in 0.05 M phosphate buffer for 24 hours and
decalcification in 10% EDTA for 3 weeks. Three micron-thick,
serial frontal sections through both condyles were made from
paraffin blocks. About 800 sections including both condyles were
obtained from each sample.

In order to select the section that contained the widest frontal
section of the condyle, one out of every 20 sections was stained
with hematoxylin and eosin (H-E) and the condyle widths of both
sides were measured using a microscope system (Olympus BX61
with digital camera DP71, Olympus Corporation, Tokyo, Japan)
and Motic Image Plus 2.1 version 2.1.2 (Shimazu, Tokyo, Japan).
Finally, we used a set of 20 serial sections including the widest
section for immunohistochemical staining.

Immunohistochemistry
After high-temperature unmasking technique was performed

by an autoclave at 121°C for 15 minutes in 0.01 M sodium citrate
buffer solution (pH6.0), three micron-thick paraffin sections were
routinely treated. Anti-proliferation cell nuclear antigen (PCNA)
antibody (Dako, Glostrup, Denmark) as primary antibodies and
Nichirei MAX-PO Multi (Nichirei, Tokyo, Japan) as a secondary
antibody were incubated 4 overnight and at room temperature
30 minutes, respectively. After visualization with 3-3’-
diaminobenzidine tetrahydrochloride (Dako, Glostrup, Denmark),
sections were counterstained with hematoxylin. Negative control
slides were processed without the primary antibodies.

Image analyses
All digital images (JPEG, 1600×1200 pixels) of H-E staining

sections were captured with a 10× objective lens using a
microscope system (Olympus BX61 with digital camera DP71,
Olympus Corporation, Tokyo, Japan). As is shown in Fig. 2, values
of maximum width, proliferative zone thickness and condylar
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Figure 1. Experimental design of rhbFGF injection into the mandibular condyle of newborn mice
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height were histomorphometrically analyzed using Motic Image
Plus 2.1 version 2.1.2 (Shimazu, Tokyo, Japan). Briefly, maximum
width was defined as the distance between parallel tangents to the
axis of condylar head. Proliferative zone thickness, defined as the
distance from the top of the condyle to the end of proliferative
zone including fibrous and proliferative zones, was measured along
the perpendicular line to the measurement line of maximum width.
Condylar height was measured as the distance from the top of
condyle to the cross point between the perpendicular line and
maximum width measurement line. Proliferative zone thickness
ratio (%) was calculated as proliferative zone thickness divided
by condylar height.

In order to analyze proliferating index, captured JPEG files
(1600×1200 pixels) were processed with Motic Image Plus 2.1
version 2.1.2 (Shimazu, Tokyo, Japan). Briefly, we selected
arbitrary areas in proliferative and differentiated zones including
more than 800 and 1,000 cells, in controls and experiments,
respectively. PCNA-positive and negative nuclei, namely brown-
and blue-stained nuclei,  were extracted spectrally and
automatically counted. The percentage of positive cells divided
by the sum of positive and negative cells was calculated as
proliferating index (PI).

Statistical analyses
After calculating the Shapiro-Wilk-test for normality checking,

the comparison of histomorphometric analysis data between
controls and experiments was analyzed with Wilcoxon signed-
rank test. Multiple comparisons of values among four groups of
controls and experiments were analyzed using the Kruskal-Wallis
test followed by Steel-Dwass test. All statistical analyses were
performed with R (The R Foundation for Statistical Computing,

version 2.13.0). Simultaneously, p values less than 0.05 were
considered statistically significant.

Results
Macroscopic findings

All animals of both controls and experiments showed neither
mandibular malposition nor craniofacial malformations. The skin
of the treated area demonstrated no dermal lesions such as
dermatitis or ulcerative change.

Histological findings
One day after the final bFGF injection, control condyles were

covered by fibrous tissue namely fibrous or articular zone
composed of some collagen fibers and fibroblasts. Beneath the
fibrous zone, a thin highly cellular area or proliferative zone of
mesenchymal spindle cells was noted, followed by a maturation
zone comprising flatten or oval chondrocytes embedded in hyaline
matrix. Finally, large chondrocytes were distributed in the
hypertrophic cell zone in the deepest area (Fig. 3a). Experimental
condyles showed neither traumatic changes nor morphological
abnormalities in each layer. Fibrous to hypertrophic cell zones
were clearly recognized without frank hyperplasia. However,
fibrous to proliferative zones were markedly thicker than those of
the control (Fig. 3b).

Four days after the final injection, features of controls showed
similar to that of the control at 1 day after the injection. The number
of mesenchymal cells of proliferative zone and the thickness of
the fibrous zone to hypertrophic cell zone somewhat decreased
(Fig. 3c). In experiments without any abnormal formations, the
proliferative zone somewhat reduced its thickness comparing to
that of the 1-day-experimental sample, while, chondrocytes and
hypertrophic chondrocytes increased in number. Simultaneously,
the distance of the condylar top to erosive zone and the maximum
width of the experiment were greater than those of the control
condyle (Fig. 3d).

Seven days after the injection, controls showed that the
distance from the fibrous zone to the front of endochondral
ossification markedly decreased compared with that of the 4-day
group (Fig. 3e). Seven-day experiments showed that proliferative,
maturation and hypertrophic cell zones were somewhat thicker
than those of controls without any abnormal morphology. The
front of ossification was moved toward the condylar top in contrast
to the 4-day experiments, but this boundary was away from the
top of the condyle compared with the controls (Fig. 3f).

Fourteen days after the injection, both the controls and
experiments showed similar morphological features, and
significantly increased in width compared with the 7-day group.
The thickness of fibrous to hypertrophic cell layers became
somewhat thin, accompanied by the upward shift of ossification
front and active formation of bone trabeculae (Fig. 3g, 3h). This

Figure 2. Schematic illustration of morphometric analysis
Line A and B are tangents parallel to the longitudinal axis of the
condyle. Line C is the tangent to the top of condyle which is parallel
to the line AB. To measure proliferative zone thickness and condylar
height, a perpendicular line was drown from the contact point of
line C.
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change was remarkable in the experiments (Fig. 3 3h).
Immunohistochemical findings

PCNA-positive cells were mostly distributed in the
proliferative zone but a few positive cells were also observed in
the maturation zone in all groups. Positive cells of experimental
groups were more than those of controls. Experimental groups
tended to gradually increase in number from the 1-day group to
the 7-day group. However, positive cells of the 14-day group
seemed to decrease in number in comparison with the 7-day group
(Fig. 4).

Histomorphometric analysis
Morphometric data are summarized in Table 1. Maximum

width values of both controls and experiments gradually increased
with the time course (408.0±16.5 μm and 533.4±86.1 μm at 1
day, 512.8±25.5 μm and 674.2±128.3 μm at 4 days, 629.4±36.8
μm and 722.6±56.7 μm at 7 days, 743.3±78. 7 μm and 810.8±90.8
μm at 14 days, in controls and experiments, respectively).
Maximum width values of experiments were significantly higher
(p<0.01) than those of controls. Experimental values were 1.31,

1.31, 1.15 and 1.09 fold larger than those of controls at 1 day, 4
days, 7days and 14 days after the injection, respectively (Table
1). Among experimental values, there were statistical differences
except for the 4-day and 7-day groups, the 4-day and the 14-day
groups and the7-day and 14-day groups (Fig. 5a).

Proliferative zone thickness, namely the thickness of fibrous
and proliferative zones, showed a significant difference between
controls and experiments: 117.1±4.4 μm and 155.0±6.7 μm at
1day, 124.5±6.0 μm and 195.2±8.2 m at 4 days, 136.5±3.4 μm
and 175.8±10.3 μm at 7 days, 129.9±2.4 μm and 142.1±8.0 μm at
14 days, in controls and experiments, respectively. In controls,
proliferative zone thickness gradually increased and reached to a
peak at 7 days after the injection and turned to decline, while
experiments exhibited the maximum value at only 4 days after the
injection. Experimental values were 1.32, 1.57, 1.29 and 1.09 fold
larger than those of controls at 1 day, 4 days, 7days and 14 days
after the injection, respectively (Table 1). Multiple comparison
tests revealed statistically significant differences among all
experimental and control groups except for between the 4-day
and 14-day controls (Fig. 5b).

The trend of proliferative zone thickness ratio was similar to
that of proliferative zone thickness. All experimental ratios were

Figure 3. Histological features of controls at 1, 4, 7 and 14 days
after the injection (a, c, e, g) and experiments at 1, 4, 7 and 14 days
after the injection (b, d, f, h): Condyles of both controls and
experiments gradually increase in width with the time course. Note
the difference between thickness of mesenchymal and cartilaginous
cells of the control and experiment especially at 7 days after the
injection (e and F).

Figure 4. PCNA-immunostaining features of controls at 1, 4, 7 and
14 days after the injection (a, c, e, g) and experiments at 1, 4, 7 and
14 (b, d, f, h). Positive cells of experiments are more than those of
experiments.
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significantly higher (p<0.01) than those of controls: 50.5±2%
versus 60.4±1% at 1day, 49.8±3% versus 69.7±3% at 4 days,
49.4±1% versus 58.6±4% at 7 days, 36.2±1% versus 37.8±2% in
controls and experiments, respectively. Experimental values were
1.20, 1.40, 1.19 and 1.04 fold larger than those of controls at 1
day, 4 days, 7days and 14 days after the injection, respectively
(Table 1). Although values of controls between 1 day and 4 days,
1day and 7 days, 4 days and 7 days were not significant, the values
of experiments were statistically significant (p<0.001) except for

between 1 day and 7 days (Fig. 5c).
Proliferating index analysis

Roughly 800 to 1,600 cells and 1,000 to 2,000 cells were
observed within selected areas of controls and experiments,
respectively. Mean values of proliferating index were significant
differences between controls and experiments: 39.7±1% and
50.2±3% at 1 day, 43.2±1% and 68.9±4% at 4 days, 47.1±3% and
50.5±3% at 7 days, 43.0±3% and 50.4±2 at 14 days. Experimental
values were 1.26, 1.59, 1.07 and 1.17 fold larger than those of

Figure 5. Box plots of maximum width (a), proliferative zone thickness (b), proliferative zone thickness ratio (c)
and proliferative index (e). White and gray columns show controls and experiments, respectively. Width: maxi-
mum width of condyle, Thickness: proliferative zone thickness, Thickness ratio: proliferative zone thickness
ratio, PI: proliferating index, G01C/E, G04C/E G07C/E and G14C/E: 1-day, 4-day, 7-day and 14-day groups of
the controls and experiments. *p<0.05, **p<0.01, ***p<0.001, Kruskal-Wallis test with Steel-Dwass test

297

Table  1 Histomorphometrically analyzed data of controls and experiments

MW: maximum width of condyle, PT: thickness of fibrous and proliferative zones, T ratio: PT divided by condylar height, PI:
proliferating index, *p<0.05, **p<0.01, (Wilcoxon signed-rank test)

         1 day          4 days          7 days         14 days
MW, m 408.0 vs. 533.4** 512.8 vs. 674.2** 629.4 vs. 722.6** 743.3 vs. 810.8**

Cont vs. Exp PT, m 117.1 vs. 155.0** 124.5 vs. 195.2** 136.5 vs. 175.8** 129.9 vs. 142.1**
Tratio 50.5 vs. 60.4** 49.8 vs. 69.7** 49.4 vs. 58.6** 36.2 vs. 37.8**
PI 39.7 vs. 50.2** 43.2 vs. 68.9** 47.1 vs. 50.5* 43.0 vs. 50.4**
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controls at 1 day, 4 days, 7 days and 14 days after the injection,
respectively (Table 1).   Proliferating index of controls gradually
increased and reached a peak at 7 days after the injection with a
significant difference between each group, except for the 4-day
group and the 14-day group, while the proliferating index value
of the 4-day experiment was the highest one showing significant
differences (p<0.001) comparing to values of other three
experimental groups. There was no statistical difference between
1-day and 4-day, 1-day and 14-day, 7-day and 14-day experiments

(Fig. 5d).

Discussion
Minute investigations on the development of mandibular

condyle have been reported but there are no bFGF application
data on mandibular condyle of growing mice in vivo. Although
insulin-like growth factor (IGF) is an important factor in condyle
development8), it was reported that IGF local injection did not
influence the 3-week-old rat of cartilage development13). In our
study, it was suggested that total 0.3 μg administration of rhbFGF
accelerated development of injected condyles, because all values
calculated herein showed a statistically significant difference
between experiments and controls. The dosage in our experiment
was determined on the basis of the data reported by Shida et al.
who injected from 1 to 20 μg bFGF into the knee joint of 4-week-
Sprague-Dawley rats12). Their experiment showed that the joints
injected with more than 5 μg of bFGF were larger than that in the
control joints without bFGF injection and the effect of the injection
was dose-dependent. Considering the weight of the 4-week-old
Sprague-Dawley rats used in their experiment is about 50 g, an
injection of 5 μg bFGF is equivalent to a 0.1 μg bFGF injection
into a newborn mouse weighing 1 g.

Recombinant human bFGF works in low dose. The ED50 of
bFGF for the mitogenic activity in bovine aortic endothelial cell
is 0.3 ng/ml in vitro14). An experimental study of corneal wound
healing15) showed that doses of 0.1 to 10 ng/ml bFGF were
effective. However, the half-life of rhFGF is extremely short and
is estimated at 0.9 minutes for T1/2alpha and 7 minutes for T1/
2beta in mice after intravenous administration of 10 μg/kg16). Colin
and his coworkers17) reported that intravenously administrated
bFGF was rapidly accumulated in almost all solid organs within 5
minutes and more than 65% of FGF was retained in liver. Twenty
four hours after administration, native bFGF had totally
disappeared in liver. In the investigation of pericardial
administration, 19% of bFGF delivered in cardiac tissue was
present at 150 minutes after administration18). Although there is
no detailed data on pharmacokinetics of bFGF subcutaneous
administration, it was reported that radiolabelled bFGF after a
single injection were remained in the knee joint only several
hours12). Considering these investigations, it seems that
subcutaneously injected bFGF remains for more than 2 hours and

is mostly cleared within 24 hours. The effect of a single injection
of low dose bFGF was limited to condylar development. Therefore,
we tried daily repetitive injections for three days in this
examination. Although we have not the full answer to whether
three time injections were appropriate, this investigation gave us
interesting data as discussed below.

Histologically, control specimens showed that the thickness
of mature and hyperplastic chondrocytes in the early stage (1 day
and 4 days after injection) were thicker than those in the late stage
(7 and 14 days after the injection). In other words, the erosive
zone, which is the front of endochondral ossification, moved
toward the top of the condyle. Morphometrically, both values of
the thickness of proliferative zone and proliferating index reached
their peaks at 7 days after the injection. Transition from active
proliferation to thinning of mesenchymal cells and from thickening
cartilage formation to active endochondral ossification is
compatible with the normal development of mandibular condyle
that has a capability for adaptive remodeling in response to external
stimuli during or after natural growth10,19). Usually, lactation,
weaning and mastication periods are from birth to approximately
1 week, around 3 weeks and approximately 3 weeks onward after
birth. Current data was analyzed from 3 days to 17 days after
birth; therefore, histological and morphometric changes seemed
to be caused by the transition from lactation period to weaning
period20, 21).

Morphometric analysis clearly showed that the thickness of
proliferative zone was significantly different between the controls
and the experiments. The proliferation tendency of experimental
condyles reached its peak at 4 days and decreased with time course.
At this stage, the experimental value of proliferative zone thickness
was about 1.6 fold higher than that of the control. On the other
hand, the proliferation tendency of control condyles reached a
peak at 7 days after the injection. This difference could be caused
by stimulation of mesenchymal proliferation by bFGF
administration. In order to evaluate thickening of fibrous and
proliferative zones against vertical growth, we analyzed the ratio
of proliferative zone thickness and the height of the condyle. This
data also showed a same tendency to the proliferative zone
thickness. The peak of the proliferating index of the experiment
was also at 4 days after the injection, whereas that of the control
was at 7 days. The highest control-experiment ratio of proliferation
index value was nearly 1.6 at 4 days similar to that of proliferative
zone thickness at 4 days. As above mentioned, mesenchymal cell
thickening and cell proliferation status are intimately related to
each other. Basic FGF inhibits matrix production and increases
cell proliferation resulting in clustering of cells in intervertebral
discs6) and the proliferation of mandibular condylar chondrocytes
21). Zheng et al.  reported that bFGF-transfected human
mesenchymal cells derived from bone marrow cells had a highly
proliferative ability22). Taken together with our data, it was thought
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that bFGF local injection resulted in mesenchymal cells
proliferation, which was especially effective in the proliferative
zone. However, its effect seems to be limited to less than a week.

As mentioned above, the half-life of rhFGF was extremely
short16) but the peak of cell proliferation reached at 4days after the
final injection. This seems to be somewhat contradictory to the
half-life of rhFGF. However, some growth factors synergistically
act in cartilaginous development. Shi and his coworkers23)

demonstrated that bFGF increased both transcripts and proteins
of bFGF and TGF-beta1 in vitro. They also showed that TGF beta1
significantly increased bFGF mRNA and production. The peak
effect of bFGF production by TGF beta1 was at 4 days in contrast
to at 12 hours by bFGF only. Thus synergic effects of growth
factors after the final injection might prolong the acceleration of
mesenchymal cell proliferation in vivo.

Interestingly, chondrocytes and hypertrophic chondrocytes of
experiments increased in thickness at 4 and 7 days, and the distance
from the condylar top to the edge of erosive zone of experiments
was greater than that of controls. This feature may represent the
delay of endochondral ossification. Administrated bFGF could
possibly promote the differentiation of mesenchymal cells and
pre-hypertrophic chondrocytes expressing collagen type II24), but
this factor inhibits terminal differentiation of chondrocyte25) and
matrix components in the mandibular condyles26). The mechanism
of chondrocyte differentiation via exogenous bFGF is unknown
in our experimental model. Previous study showed that bFGF
reduced runt-related transcription factor 2 (Runx2)27), which was
closely related to upregulation of hypertrophic chondrocyte-
specific Col10A1 gene28). There is a possibility that chondrocyte
maturation is inhibited through suppression of Runx2 function.
This might be the difference of the histological feature between
the cartilaginous thicknesses of the control and experiment.
However, smad3 or TGF-beta1 signaling also represses terminal
hypertrophic differentiation of chondrocyte, and these are essential
for maintaining articular cartilage29,30) under the inhibition of TGF-
beta signaling by negative regulator, such as an oncoprotein Ski31).
The alteration of growth factor gene expressions after bFGF
injection should be investigated to clarify the regulation of
chondrocyte differentiation.

In conclusion,  addi tional  experiments on dosage,
administration interval and frequency are necessary in order to
obtain further effects of condylar development. However, our
experiment demonstrated that locally administrated bFGF could
accelerate mesenchymal cell proliferation of mandibular condyle
in the lactation period after birth. This model seems to be useful
for clarifying bFGF function against cartilaginous differentiation,
condyle development and endochondral ossification of mandibular
condyle in vivo.
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