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Chapter 1 

 

1.   ABSTRACT 

 

Bone marrow mesenchymal stem and progenitor cells (BM-MSPCs) maintain 

homeostasis of bone tissue by providing osteoblasts. Although several markers have 

been identified for labeling of MSPCs, these labeled cells still contain non-BM-MSPC 

populations. Studies have suggested that MSPCs are observed as leptin receptor 

(LepR)-positive cells, whereas osteoblasts can be classified as positive for Runx2, a 

master regulator for osteoblastogenesis. Here, we demonstrate, using Runx2-GFP 

reporter mice, that the LepR-labeled population contains Runx2-GFPlow sub-

population, which possesses higher fibroblastic colony-forming units (CFUs) and 

mesensphere capacity, criteria for assessing stem cell activity, than the Runx2-GFP− 

population. In response to parathyroid hormone (PTH), a bone anabolic hormone, 

LepR+Runx2-GFPlow cells increase Runx2 expression and form multilayered 

structures near the bone surface. Subsequently, the multilayered cells express 

Osterix and Type I collagen , resulting in generation of mature osteoblasts. 

Therefore, our results indicate that Runx2 is weakly expressed in the LepR+ 

population without osteoblastic commitment, and the LepR+Runx2-GFPlow stromal 

cells sit atop the BM stromal hierarchy. 

  



7 

 

2.   INTRODUCTION 

 

Bone marrow (BM) cells belonging to mesenchymal lineages are derived from 

mesenchymal stem and progenitor cells (MSPCs). BM-MSPCs are traditionally 

characterized as cells possessing colony forming potential in adherent culture 

conditions [known as colony-forming unit-fibroblasts, CFU-F] and have the ability 

to form clonal spheres in nonadherent culture conditions [designated as 

mesenspheres]1-3). The clonally expanded CFU-F colonies and mesenspheres have 

differentiation potential to osteoblasts, adipocytes and chondrocytes both in vitro 

and in vivo. BM-MSPCs can be marked by the expression of leptin receptor (LepR)-

Cre, and are distributed nearby blood vessels throughout the whole BM cavity 4-6). In 

vivo fate mapping approaches demonstrated that LepR+ cells differentiate to 

osteoblasts and adipocytes under normal conditions. The contribution of LepR+ cells 

to chondrocytes is observed during the healing process of bone tissue 5,6). There is 

evidence that LepR-Cre-labeled cells largely overlap with other markers for the BM-

MSPC populations including CD31−CD45−Ter119−Nestin-GFPlow cells 5,7), CXCL12 

abundant reticular (CAR) cells 8,9), PDGFR+ cells 5,6) and Prx-1-Cre labeled cells 10). 

Although these markers make it possible to enrich the BM-MSPCs from whole BM 

cells, not all the labeled cells have the potential to form CFU-F colonies or clonal 

mesenspheres 6,7,11). These results suggest that the fractions are impure and still 

contain non-BM-MSPC populations. 

 

Runt-related transcription factor 2 (Runx2) is a master regulator for 

osteoblast differentiation 12-14). Osteoblastogenesis is fully suppressed by the global 

knockout of Runx2 13,14). Exon 8 of Runx2 gene conditional deletion in mature 

osteoblasts, which express Cre recombinase under the control of a 2.3-kb fragment 

of the type I collagen  [(Col1(2.3)] promoter, exhibit low bone mass phenotype 15). In 

contrast, conditional knockout mice lacking exon 4 of Runx2 gene in mature 

osteoblasts have no effect on osteoblastic activity 16). These studies indicate that the 

necessity of Runx2 in osteoblastic activity is still controversial. On the other hand, 

in vivo lineage tracing studies have demonstrated that Runx2 is essential for 

osteoblast lineage commitment 17). Interestingly, Runx2 overexpression approaches 
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revealed that the late stage of osteoblastogenesis is negatively regulated by Runx2, 

whose levels were found to decrease with osteoblast maturation 18,19). Overall, these 

findings suggest that Runx2 is required for osteoblast commitment from immature 

mesenchymal stromal cells. These results raise the intriguing possibility that Runx2 

may be expressed in a portion of LepR+ stromal cells, which have osteogenic-

committed sub-populations.  

 

Osteoblastogenesis is completely diminished in knockout mice lacking Osterix 

(Osx), a transcription factor that acts downstream of Runx2 20). Furthermore, bone 

formation is inhibited by conditionally deleting Osx in mature osteoblasts 21). These 

results suggest that Osx is necessary not only for osteoblast differentiation, but also 

for their functions. On the other hand, during endochondral bone ossification, BM-

MSPCs are generated from part of the developing chondrogenic cell populations 17). 

The expression levels of Osx are increased throughout the development of 

chondrogenic cell populations that subsequently differentiate into BM-MSPCs 5,17,22). 

Although Osx protein expression in BM-MSPCs is completely lost in the adult stage, 

mRNA expression is maintained 15,23). However, the Osx expression pattern during 

osteoblastogenesis from BM-MSPCs has yet to be elucidated. 

 

Teriparatide, a biologically active amino acid 1–34 fragment of human PTH 

[hPTH (1–34)], is clinically used in treatment of osteoporosis patients 24). Several 

studies have demonstrated that intermittent PTH treatment induces remedial 

action against osteoporosis due to anabolic effects on bone tissue 25-28). Researchers 

have found that osteoblast precursors are increased along the bone surfaces in 

response to PTH treatment 27-30). These results suggest that the anabolic effects of 

PTH on bone tissue are exerted by the acceleration of osteoblastogenesis from 

immature BM mesenchymal precursors. However, it still remains unclear which BM 

stromal cells give rise to osteoblasts in response to PTH treatments, thereby 

mediating the therapeutic response in osteoporosis. 

 

Here we demonstrate, using Runx2-GFP reporter mice, that the LepR+ cell 

population contains Runx2-GFPlow cells, and unexpectedly, that stem cell capacity is 

enriched in the Runx2-GFPlow sub-population. In addition, our studies have shown 
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that the LepR+Runx2-GFPlow cells differentiate into mature osteoblasts via 

multilayered cell formation adjacent to bone surfaces in response to PTH-induced 

bone anabolic effects. These results provide evidence that LepR+Runx2-GFPlow cells 

sit atop the BM mesenchymal stromal cell hierarchy.  
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3.   EXPERIMENTAL PROCEDURES 

 

3.1   Experimental Animals.  

C57BL/6, B6.129-Leprtm2(cre)Rck/J (LepR-Cre), B6.Cg-Gt(ROSA)26Sortm14 

(CAG-tdTomato)Hze/J mice were purchased from Jackson Laboratory (Bar Harbor, 

ME). Osx-CreERT2 mice 34) were provided from H.M. Kronenberg (Endocrine Unit, 

Massachusetts General Hospital and Harvard Medical School, USA). Col1(2.3)-Gfp 

mice 45) and Runx2-Gfp mice 31) were generated in one of the author’s laboratories, 

and backcrossed with C57BL/6 (SLC, Shizuoka, Japan) for 5 generations. 5–7 week-

old mice were used for all experiments. All mice were maintained in pathogen-free 

conditions in animal facilities certified by the Animal Care and Use Committees of 

Matsumoto Dental University, and animal protocols were approved by that 

committee. All animal studies were performed in accordance with the Guidelines of 

the Matsumoto Dental University Animal Care Committee. 

 

3.2   Antibodies and reagents.  

The primary antibodies used were Alexa Fluor 647-anti-VE-Cadherin and 

Alexa Fluor 647-anti-CD31/PECAM-1 (MEC13.3) (all from Biolegend, San Diego, 

CA); APC or PE-anti-CD45 (30-F11), APC or PE-anti-Ter119 (Ter119) (all from 

eBioscience, Waltham, MA); anti-LepR, anti-SOST/Sclerostin and anti-fatty acid 

binding protein 4 (FABP4) (all from R&D systems, Minneapolis, MN); anti-

Osteocalcin (R21C-01A) and anti-DMP-1 (all from TAKARA, Shiga, Japan);anti-

Perilipin (Novus Biologicals, Centennial, CO); anti-chick type II collagen (A2-10) 

(Chondrex); anti-Runx2 (D1L7F) (Cell Signaling, Danvers, MA). The secondary 

antibodies used were Alexa Fluor 647 donkey anti-goat IgG and Alexa Fluor 594 

donkey anti-rat IgG (all from Molecular probes, Waltham, MA); Cy3 donkey anti-

mouse IgG (Merck Millipore, Burlington, MA); FITC donkey anti-rabbit IgG (Bethyl 

Laboratories, Montgomery, TX). Alexa Fluor 488-anti-GFP (Molecular Probes) was 

used for enhancement of the Runx2-GFP signal. Nuclei were stained with Hoechst 

33342 (Sigma-Aldrich, St. Louis, MO) or TO-PRO-3 Iodide (642/661) (Molecular 

Probes). 
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3.3   PTH treatment and induction of Cre-mediated recombination.  

Human PTH (1–34) was kindly provided from Asahi Kasei Pharma Co. Ltd 

(Tokyo, Japan). Four-six-week-old mice were intraperitoneally injected with PTH (80 

g/kg/12 hours) for 10 days. Forty-eight hours after the final PTH injection, mice 

were sacrificed and used for analyses. For induction of Cre-mediated recombination 

in Osx-CreERT2 mice, CRF-1 chow diet (Oriental Yeast, Tokyo, Japan) containing 

tamoxifen (Sigma-Aldrich) at 400 mg/kg was given from 5 days before the first PTH 

injection until the end of the experiment. 

 

3.4   Microscopy imaging. 

Mice were perfused with 4% paraformaldehyde (PFA) for fixation, and bone 

tissue were further fixed with 4% PFA for 24 hours at 4 ℃, and incubated in 10%, 

20% and 30% sucrose each for 2 hour sat 4 ℃ for cryoprotection, then embedded in 

5% carboxymethyl cellulose (SECTION-LAB, Hiroshima, Japan). Sections, 10–20-

m thick, were prepared using Kawamoto’s film method46. Z-stack confocal projection 

images were obtained from 2-m interval images from 10–20-m thick sections. 

Fluorescence and phase-contrast images were acquired using a laser-scanning 

confocal microscope (LSM510, Carl Zeiss, Oberkochen, Germany) equipped with 

Plan-Apochromat (10×/0.45 and 20×/0.8), ZEN and Axiovision software (Carl Zeiss). 

Bright-field images were acquired using a Light microscope Zeiss Axiovert 200 (Carl 

Zeiss) equipped with Plan-NEOFLUAR (2.5×/0.075), LD A-plan (40×/0.50 Ph2) and 

Axiovision software (Carl Zeiss) and Stemi 2000-C (Carl Zeiss). 

 

3.5   Preparation of BM cell suspension.  

BM was gently flushed in L-15 FACS buffer 47). BM was digested with 0.1% 

collagenase IV (Gibco, Waltham, MA), 0.2% Dispase (Gibco) and 20 U/ml DNase 

(Worthington Biochemical, Lakewood, NJ) in HBSS (Gibco) for 30 min at 37 ℃. 

 

3.6   CFU-F assay.  

Mouse sorted cells were seeded at 2–3 ×103 cells per well in a 12-well adherent 

tissue cultureplate using a MesenCult proliferation Kit with MesenPure (StemCell 

Technologies, Vancouver, BC) containing 100 U/ml and 100 g/ml penicillin-

streptomycin. Half of the media was replaced after 7 days and at day 10, cells were 
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stained with Giemsa staining solution (EMD Chemicals, Darmstadt, Germany) and 

adherent colonies were counted. 

 

3.7   Spheroid formation assay.  

Mouse sorted cells at 1 × 103 were transferred to non-adherent 24 well plates 

(Corning, NY, USA) with spheroid-forming media 5, 7, 47) [1:2 ratio of DMEM F12 

(Gibco) and Human Endothelial Medium (Gibco)  supplemented with 3.75% 

Chicken Extract (US Biological, Salem, MA), 0.1 mM -ME (Invitrogen, Waltham, 

MA), 1% Non-essentialamino acids (Gibco), 1% Pen-strep (Gibco), 1% N2 (Gibco), 2% 

B27 (Gibco), 20 ng/mL human bFGF (R&D systems), 20 ng/mL mouse PDGF 

(Peprotech, Rocky Hill, NJ), 20 ng/mL mouse oncostatin M (R&D systems), 20 ng/mL 

mouse IGF-1 (Peprotech), 20 ng/mL mouse EGF (Peprotech)]. After 7 days, the 

spheroid efficiency was determined. 

 

3.8   Cell sorting and flow cytometry.  

Cell sorting experiments were performed using an Aria III Cell Sorter (BD 

Biosciences, San Jose, CA). Flow cytometric analyses were carried out using a 

Cytomics FC 500 flow cytometer equipped with CXP software (all Beckman Coulter 

Life Sciences, Brea, CA). Dead cells and debris were excluded by FSC, SSC, DAPI 

(Dojindo, Kumamoto, Japan) and Fixable Viability Dye eFluor 780 (eBioscience) 

staining profiles. Data were analysed with FlowJo (Tree Star, Ashland, OR) software. 

 

3.9   In vitro cell differentiation.  

Sorted LepR-Cre/Tomato+Runx2-GFPlow stromal cells were expanded using a 

MesenCult proliferation Kit with MesenPure (StemCell Technologies) containing 

100 U/ml and 100 g/ml penicillin-streptomycin. Osteogenic, adipogenic and 

chondrogenic differentiation were induced using a Mouse Mesenchymal Stem Cell 

Function Identification Kit (R&D systems). Cells were maintained with 5% CO2 in a 

water-jacketed incubator at 37 ℃ for 2-5 weeks. Mineralized osteogenic cells were 

identified by Alizarin Red S (Sigma-Aldrich) staining. Adipocytes were identified by 

characteristic production of lipid droplets and staining with an anti-FABP antibody 

(R&D systems). Chondrocytic cells were identified using an Alcian Blue 8GX solution 

(Sigma-Aldrich). 
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3.10   RNA isolation and quantitative real-time PCR.  

Sorted cells were collected in TRIzol reagent (Ambion, Waltham, MA) and 

mRNA was purified using a PureLink RNA Micro kit (Invitrogen). Reverse 

transcription and quantitative real-time PCR were performed using a One Step 

SYBR Prime Script PLUS RT-PCR kit (TAKARA, Shiga, Japan) and an Applied 

Biosystems StepOnePlusTM (Applied Biosystems, Waltham, MA). Gene expression 

data was normalized to Gapdh. The sequences of primers for each gene were as 

follows: 

 Forward Reverse 

Gapdh TGTGTCCGTCGTGGATCTGA TTGCTGTTGAAGTCGCAGGAG 

PDGFRa AGCAAACATCTTGAC TTGGGAACA ACTTGCATCATTCCCGGACAC 

CXCL12 CCAGAGCCAACGTCAAGCAT CAGCCGTGCAACAA TCTGAA 

LepR TCAGAATTTTGGGTGGAAAA GTCCAGGTGAGGAGCAAGAG 

Runx2 CCAGCCACCGAGACCAACC CCAGCCACCGAGACCAACC 

 

3.11   Microcomputed tomography analysis.  

Femora were fixed in 70% ethanol. Three-dimensional (3D) reconstructions 

of distal femora were obtained by micro-computed tomography (CT) (ScanXmate-

A080,Comscan Tecno, Kanagawa, Japan). Morphological indices were calculated in 

trabecular bones located from 0.5 to 1.5 mm from the growth plates using image 

analysis software (TRI/3D-BON, Ratoc Syatem Engineering, Tokyo, Japan). 

 

3.12   Statistics.  

The results were expressed as mean ± SD. Data were evaluated by unpaired 

Student′s t-tests. Experiments were performed three times and similar results were 

obtained. Statistical analyses were performed with GraphPad Prism 6 (GraphPad 

Softwear Inc., La Jolla, CA). P < 0.05 was considered significant. 

 

 

 

 

 

 

 

 



 14 

4.    RESULTS 

 

4.1 Runx2 is heterogeneously expressed in the LepR+ BM stromal cell population. 

To detect Runx2 expressing cells in bone tissue, we analyzed Runx2-GFP 

reporter mice, in which GFP is driven by a bacterial artificial chromosome (BAC) of 

Runx2 locus 31). FITC-conjugated anti-GFP antibody was used to amplify the 

intensity of the GFP signal when imaging bone tissue sections. Consistent with a 

previous study 31), Runx2-GFP+ expression in bone tissues was detected in osteoblasts, 

osteocytes and chondrocytes (Fig. 1A–D). Interestingly, the Runx2-GFP signal was 

observed not only in bone tissues, but also in the BM cavity (Fig. 1A, right panel). 

Some hematopoietic cells were observed as GFP-positive cells due to nonspecific 

binding of the anti-GFP antibody (compare wild-type and Runx2-GFP mice in Fig. 

1E). On the other hand, VE-cadherin (VE-Cad) and CD31-positive endothelial cells, 

and Perilipin-positive adipocytes did not express Runx2-GFP (Fig. 1F,G). It is 

interesting to note that leptin receptor-positive (LepR+) BM stromal cells, which are 

considered to have characteristics of BM-MSPCs, also weakly expressed Runx2-GFP 

throughout the bone marrow cavity (Fig. 1H). These results indicate that the 

osteoblastic master regulator Runx2 may already be expressed in the pre- or early 

osteoblastic lineage-committed LepR+ sub-population.  

 

To further analyze Runx2-GFP expression pattern in the BM stromal 

population, we performed flow cytometric analyses of BM cells in the Runx2-GFP 

mice. Runx2-GFP+ cells were observed in the BM stromal cell population without 

enhancing the GFP signal by FITC-conjugated anti-GFP antibody (Fig. 2A). We 

found two distinct types of Runx2-GFP+ cells on the basis of their GFP expression 

levels and cellular morphology (designated as Runx2-GFPlow and -GFPhigh cells) (Fig. 

2A). Most of the Runx2-GFPlow cells (82.0 ± 1.4%), but not Runx2-GFPhigh cells (3.3 ± 

1.8%), were positive for LepR (Fig. 2A). Previous reports suggested that mature 

osteoblasts are negative for LepR 5, 6). These results indicate that the mature 

osteoblasts are contained in the Runx2-GFPhigh population. Next, we analyzed the 

Runx2-GFP expression pattern in LepR+ cells. Interestingly, most of the LepR+ cells 

were positive for Runx2-GFP (64.6 ± 2.0%) (designated as LepR+Runx2-GFPlow cells)  
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(Fig. 2B, right panel). The frequency and absolute number of LepR+Runx2-GFPlow 

cells per femur were approximately 3-times higher than those of LepR+Runx2-GFP− 

cells (Fig. 2C,D). These results indicate that LepR+ cells consist of two populations: 

LepR+Runx2-GFPlow and LepR+Runx2-GFP− sub-populations. 

 

4.2   Stem cell activity is enriched in the Runx2-GFPlow sub-population of LepR+ 

cells.  

Upregulation of Runx2 expression is thought to indicate osteoblastic 

commitment of multipotent BM stromal progenitors 32).We next generated LepR-

Cre/ROSA26-loxP-stop-loxP-tdTomato/Runx2-GFP (LepR/Tomato/Runx2-GFP) mice, 

and analyzed whether stem cell activity in LepR+ cells increases in inverse 

proportion to Runx2 expression levels. Previous reports demonstrated that the 

differentiation of LepR+ cells into mature osteoblasts is mainly observed in adult 

mice, and only rarely seen in young mice 5, 6). In order to avoid contamination of the 

LepR-Cre-labeled population with LepR+ cell-derived osteoblasts, we analyzed young 

mice (5–7 weeks old) in this experiment. Histological analysis demonstrated that 

bone-lining osteoblasts were strongly positive for Runx2-GFP, but negative for 

LepR/Tomato (Fig. 3A, asterisks). These results indicate that LepR-Cre-labeled 

Tomato+ (LepR/Tomato+) cells do not contain the osteoblastic population in young 

mice. On the other hand, the LepR/Tomato+ cells in the BM cavity were positive for 

Runx2-GFP (Fig. 3A, arrows). Immunofluorescence staining showed that LepR/ 

Tomato+ cells express Runx2 protein (Fig. 3B, arrows). Flow cytometric analysis also 

demonstrated that the majority of LepR/Tomato+ cells in BM expressed Runx2-GFP 

(60.9 ± 2.5%) (Fig. 3C). We then assessed the stem cell activity of both Runx2-GFPlow 

and Runx2-GFP− sub-populations in LepR/Tomato+ cells by performing CFU-F 

assays of cell sorted BM stromal fractions (Fig. 3D). Consistent with previous reports 

6, 7), there were no CFU-F capable cells in the LepR/Tomato− BM stromal population 

(Fig. 3D). Contrary to our expectations, the CFU-F capacity of the 

LepR/Tomato+/Runx2-GFPlow BM stromal population was high (Fig. 3D). CFU-F 

colonies derived from the LepR/Tomato+/Runx2-GFPlow BM stromal population were 

positive for LepR/Tomato and weakly Runx2-GFP− positive (Fig. 3E,F). Furthermore, 

when BM stromal fractions were plated at clonal densities under nonadherent 

culture conditions, the LepR/Tomato+/Runx2-GFPlow population formed spheres 
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(mesenspheres) at greater frequency than other fractions (Fig. 3G,H). The 

LepR/Tomato+/Runx2-GFPlow BM stromal cells exhibited tri-lineage differentiation 

potential (Fig. 3I–K). However, it is not clear whether the LepR/Tomato+/Runx2-

GFPlow BM stromal cells generate other types of BM stromal cells. Real-time PCR 

analyses revealed that the LepR/Tomato− sub-population did not express the MSPC 

markers PDGFR 7, 33) LepR 5, 6) or CXCL12 23) (Fig. 3L-N). Interestingly, the 

expression levels of all three of these MSPC markers in the LepR-

Cre/Tomato+Runx2-GFPlow sub-population were significantly higher than in the 

LepR-Cre/Tomato+Runx2-GFP− sub-population (Fig. 3L-N). These results also 

indicated that the LepR-Cre/ Tomato+Runx2-GFPlow sub-population overlaps with 

CXCL12 abundant reticular (CAR) cells 23), which are generated from part of the 

developing chondrogenic cell populations 17). The expression levels of Runx2 mRNA 

in the Runx2-GFPlow sub-population were significantly higher than those in the 

Runx2-GFP− sub-population from LepR-Cre/Tomato+ stromal cells (Fig. 3O). The 

Runx2 expression was hardly detected in the LepR-Cre/Tomato− stromal cell 

population at the mRNA level (Fig. 3O). Consistently, the LepR-Cre/Tomato− stromal 

population contained almost no Runx2-GFP+ cells (0.7 ± 0.2%) (Fig. 4). Taken 

together, these results indicate that stromal stem cell activity in BM is high in 

LepR+Runx2-GFPlow stromal cell populations. Therefore, our findings provide 

evidence that LepR+ Runx2-GFPlow cells sit atop the BM stromal cell hierarchy, and 

the osteoblastic master transcription factor Runx2 is weakly expressed in BM-MSPC 

populations without osteoblastic lineage commitment. 

 

4.3    LepR+Runx2-GFPlow cells differentiate into osteoblasts through multilayered 

cell formation in response to PTH anabolic effects.  

In vivo genetic lineage tracing analysis demonstrated that LepR+ cells 

differentiate into osteoblasts 5, 6). As we found that stem cell activity is enriched in 

LepR+Runx2-GFPlow BM stromal cell populations, we next examined whether 

LepR+Runx2-GFPlow cells differentiate into mature osteoblasts in vivo by lineage 

tracing. Because intermittent treatment of parathyroid hormone (PTH) (1–34) 

increased bone volume by inducing bone formation (Fig. 5) 24–26, 28), we injected PTH 

into LepR/Tomato/Runx2-GFP mice. Bone-lining osteoblasts were detected as 

Runx2-GFP single-positive cells in the control group (Fig. 6A, asterisks). In contrast, 
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LepR/Tomato and Runx2-GFP double-positive mature osteoblasts were significantly 

increased on the endosteal surface in the PTH-treated bone tissue (Fig. 6B, asterisks 

and Fig. 7A). These results suggest that osteoblastogenesis from LepR+ cells is 

accelerated by PTH treatment. It is noteworthy that while LepR+Runx2-GFPlow cells 

were observed in the control BM cavity (Fig. 6A and Fig. 8A, arrows), LepR+Runx2-

GFP+ multilayered cells (designated as ML-cells) were observed in the vicinity of 

bone tissue by PTH treatment (Fig. 6B and Fig. 8B, arrows). Quantification of 

vertical- and cross-section images revealed that ML-cells were significantly 

increased by PTH treatment (Fig. 7B and 8C–E). The expression level of Runx2-

GFP in ML-cells was higher than in LepR+Runx2-GFPlow cells (Fig. 6A, B, right 

panels, arrows). In contrast, the expression level of Runx2-GFP in ML-cells was 

lower than in cuboidal-shaped osteoblasts (Fig. 6B, right panel, arrows and 

asterisks). These results suggest that the LepR+Runx2-GFPlow cells differentiate into 

mature osteoblasts through ML-cell formation with increasing levels of Runx2 

expression. 

 

4.4   LepR+Runx2-GFPlow cell-derived multilayered cells differentiate into mature 

osteoblasts with increasing expression of Osterix and type I collagen α.  

We next analyzed the expression pattern of Osterix (Osx), a transcription 

factor downstream of Runx2, in ML-cells using Osx-CreERT2(iOsx)/Tomato/Runx2-

GFP mice, administering tamoxifen for labeling of Osx+ cells 34). Histological analyses 

demonstrated that mature osteoblasts express both iOsx/Tomato and Runx2-GFP, 

but Runx2-GFPlow cells located away from bone surfaces were negative for 

iOsx/Tomato (Fig. 6C, asterisks and arrowheads). ML-cells located far from 

osteoblasts were iOsx/Tomato negative, but those near bone-lining osteoblasts were 

positive for Tomato (Fig. 6D, arrowheads and arrows). Both the iOsx/Tomato-

negative and -positive ML-cells (Runx2-GFP+ cells) were significantly increased by 

the PTH treatment (Fig. 7C and D).  

 

Lastly, we examined the hierarchical relationship between Osx and Type- I 

collagen (Col1), a marker for mature osteoblasts, in osteoblastogenesis from ML-

cells using iOsx/Tomato/ Col1(2.3)-GFP mice. Tamoxifen-induced iOsx/Tomato+ cells 

were observed as mature osteoblasts with Col1(2.3)-GFP expression in control bone 
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tissue (Fig. 6E, asterisks). However, iOsx/Tomato+ cells were observed as ML-cells 

after PTH-treatment (Fig. 6F). Only the population of these cells localized in the 

vicinity of the bone surface overlapped with Col1(2.3)-GFP expression (Fig. 6F, 

compare arrowheads and arrows). Both the Col1(2.3)-GFP-negative and-positive 

ML-cells (iOsx/Tomato+ cells) were significantly increased by the PTH treatment (Fig. 

7E and F).These results thus suggest that LepR+Runx2-GFPlow cells differentiate 

into ML-cells adjacent to the bone surface, and that PTH treatment enhances Runx2 

expression, which subsequently induces Osx expression, resulting in differentiation 

into Col1+ mature osteoblasts (Fig. 9). 
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Figure 1. LepR+ cells in the bone marrow cavity express Runx2.  

 

(A–H) Z-stack confocal (A,D–F and H) and confocal (B,C and G) images of thick bone sections of Runx2-

GFP mice (5–6 weeks old). The images were taken from whole bone tissue (A), endosteum (B,C and F), 

epiphyseal cartilage (D) and bone marrow (E,G and H). Bone tissues are stained with osteocalcin (Red) 

(B), SOST (Red) (C), Type-2 collagen (Col2) (Red) (D), CD45 and Ter119 (Red) (E), VE-cadherin (VE-

Cad) and CD31 (Red) (F), Perilipin (White) (G), and Leptin receptor (LepR) (Red) (H) antibodies. Nuclei 

are visualized with Hoechst 33342 (blue) and propidium iodide (PI) (Red). Arrows: Osteoblasts (B), 

Osteocytes (C), and LepR+ cells (H). 
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Figure 2. LepR+ cells contain Runx2-GFPlow and Runx2-GFP− sub-populations.  

 

(A) Representative FACS plots (gated on live CD45−Ter119−CD31− cells) showing the expression of LepR 

in Runx2-GFP+ stromal populations from 5 week-old Runx2-GFP mice. Left panel showing 

representative FACS plot of WT control (gated on live CD45−Ter119−CD31− cells). Black and red lines 

represent the isotype control and specific antibody against LepR, respectively. n = 3. (B) Representative 

FACS plots (gated on live cells) showing frequency of Runx2-GFP+ population in the 

CD45−Ter119−CD31−LepR+ cell population (right panel) from 5–6 week-old Runx2-GFP mice. Left panel 

showing negative control for LepR antibody (gated on live cells). Black and red lines represent the WT 

control and Runx2-GFP mice, respectively (right panel). n = 3. (C and D) Quantification of the frequency 

(C) and absolute number (D) of Runx2-GFPlow and Runx2-GFP− sub-populations in LepR+ cells 

(CD45−Ter119−CD31−). n = 3. *p < 0.05, **p < 0.01. Data are represented as mean ± SD. 
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Figure 3. Stromal stem cell activity in BM is enriched in LepR+Runx2-GFPlow population.  

 

(A) Z-stack confocal images of thick bone sections of 6 week-old LepR-Cre/Tomato/Runx2-GFP mice. 

Arrows: LepR-Cre-derived Tomato+ (LepR/Tomato+)/Runx2-GFPlow cells. Arrowheads: LepR/Tomato+/ 

Runx2-GFP− cells. *: Runx2-GFPhigh bone-lining mature osteoblasts. Nuclei were visualized with 

Hoechst 33342 (blue). (B) Z-stack confocal images of thick bone sections of 6 week-old LepR-Cre/Tomato 

mice stained with Runx2 (left panel, green) and control IgG (right panel). Arrows: 

LepR/Tomato+/Runx2+cells. Nuclei are visualized with To-PRO-3 (blue). (C) Representative FACS plots 

(gated on live cells) showing the percentages of Runx2-GFP-positive (designated as Runx2-GFPlow) and 

-negative (designated as Runx2-GFP−)cells (middle panel) in the CD45−Ter119−CD31−LepR/Tomato+ 

stromal population (left panel) from 6 week-old LepR-Cre/Tomato/Runx2-GFP mice. Right panel 

showing representative FACS plot of control (gated on live D45−Ter119−CD31−LepR/Tomato+ cells) in 6 

week-old LepR-Cre/Tomato mice. (D–O) CD45−Ter119−CD31− stromal cells (gated on live cells) were 

sorted based on expression of LepR-Cre/Tomato and Runx2-GFP from 6–7 week-old LepR-

Cre/Tomato/Runx2-GFP mice, and percentage of CFU-F (D) and clonal sphere (mesensphere) formation 

(G) were determined. Representative image of CFU-F colony (E; Giemsa staining, F; Tomato and GFP 

fluorescence). n = 3 independent experiments. Arrows: LepR/Tomato and Runx2-GFP double-positive 

cells. Representative image of mesensphere formation (H; bright field, Tomato, and GFP fluorescence). 

n = 3 independent experiments. Differentiation phenotypes of LepR/Tomato+/Runx2-GFPlow cells shown 

by Alizarin Red S: osteoblasts (I), lipid droplets and staining with FABP4 antibody: adipocytes (J), and 

Alcian Blue: chondrocytes (K). Expression levels of LepR (L), PDGFRa (M), CXCL12 (N) and Runx2 (O) 

were measured by quantitative real-time PCR. n = 3–5. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 

0.0001. Data are represented as mean ± SD. 
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Figure 4. Runx2-GFP+ cells are hardly detected in the CD45−Ter119−CD31−LepR/Tomato− stromal 

population 

 

Representative FACS plots (gated on live cells) showing the percentages for Runx2-GFP-positive and -

negative cells (right panel) in the CD45−Ter119−CD31−LepR/Tomato− stromal population (left panel) 

from 6 week-old LepR-Cre/Tomato/Runx2-GFP mice. 
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Figure 5. Intermittent PTH treatment increases bone mass of wild-type mice. 

 

Six week-old wild-type mice were treated with vehicle and hPTH(1–34). Representative micro-CT 

images (A and B) and quantification of bone parameters (C-F). BV/TV, trabecular bone volume/total 

volume ratio (C), Tb. th., trabecular thickness (D); Tb. n., trabecular number (E); Tb. sp., trabecular 

separation (F). n=6. **p < 0.01. Data are represented as mean ± SD. 
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Figure 6. LepR+Runx2-GFPlow cells differentiate into osteoblasts through multilayered cell formation 

in response to PTH-induced anabolic effects.  

 

(A–F) Z-stack confocal images of thick bone sections of 6 week-old LepR-Cre/Tomato/Runx2-GFP mice 

(A and B), tamoxifen-administered iOsx/Tomato/Runx2-GFP mice (C and D), and tamoxifen-

administered iOsx/Tomato/Col1(2.3)-GFP mice (E and F) with vehicle (A,C and E) and hPTH(1–34) (B,D 

and F) intermittent treatment. Arrows: LepR-Cre-derived Tomato+(LepR/Tomato+) Runx2-GFP+ cells 

(A and B), iOsx/Tomato+Runx2-GFP+ cells (D) and iOsx/Tomato+Col1(2.3)-GFP+ cells (F). Arrowheads: 

iOsx/Tomato−Runx2-GFP+ cells (C and D) and iOsx/Tomato+Col1(2.3)-GFP− cells (F). *: Bone lining 

mature osteoblasts. Nuclei were visualized with To-PRO-3 (blue). 
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Figure 7. Osteoblastogenesis and multilayered (ML)-cells are induced in response to intermittent PTH 

treatment. 

 
Six week-old LepR-Cre/Tomato/Runx2-GFP mice (A and B), tamoxifen-administered iOsx/Tomato/Runx2-GFP mice 

(C and D) and tamoxifen-administered iOsx/Tomato/Col1(2.3)-GFP mice (E and F) with vehicle and hPTH(1-34) 

intermittent treatment. Quantification of LepR-Cre/Tomato+/Runx2-GFP+ osteoblasts (A), LepR/Tomato+/Runx2-

GFP+ ML-cells (B), iOsx/Tomato− Runx2-GFP+ ML-cells, (C), iOsx/Tomato+Runx2-GFP+ ML-cells (D), 

iOsx/Tomato+Col1(2.3)-GFP− ML-cells (E) and iOsx/Tomato+Col1(2.3)-GFP+ ML-cells (F) in 1 mm2 within 200 m 

from the bone surface. n=3-6 sections. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data are represented as 

mean ± SD. 
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Figure 8. Multilayered (ML)-cells are formed along the bone surface in response to intermittent PTH 

treatment. 

 

(A-D) Z-stack confocal images of thick bone sections of 6 week-old LepR-Cre/Tomato/Runx2-GFP mice 

with vehicle (A and C) and hPTH (1-34) (B and D) intermittent treatment. Arrows: LepR-Cre-derived 

Tomato+(LepR/Tomato+)Runx2-GFP+ cells (A, B and D). (E) Quantification of the number of 

LepR/Tomato+ ML-cells within 50 m from the bone surface. n=3. *p < 0.05. Data are represented as 

mean ± SD. Nuclei were visualized with To-PRO-3 (blue). 
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Figure 9. Differentiation model of LepR+Runx2-GFPlow cells into osteoblasts.  

 

LepR+Runx2-GFPlow cells form multilayered structures along the bone surface in response to 

intermittent PTH treatment. In this process, the LepR+Ranx2-GFPlow cells increase the expression 

levels of Runx2, Osx and Col1 sequentially, and eventually differentiate into mature osteoblasts. 
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5.   DISCUSSION 

 

To clarify in vivo osteoblastogenesis from LepR+ cells, we analyzed the 

expression pattern of the early osteoblastic transcription factor, Runx2, in LepR+ 

cells using Runx2-GFP transgenic mice 31). Here we report that BM-MSPCs in adult 

BM are confined to the weak Runx2-GFP-expressing LepR+ stromal cell population, 

which differentiates into Col1+ mature osteoblasts in response to PTH anabolic 

effects. In this process, the LepR+Runx2-GFPlow cells form multilayered structures 

along the bone surface, subsequently increasing expression levels of Runx2 and Osx. 

  

Our results demonstrating that the stem cell capacity is enriched in Runx2-

GFPlow populations are consistent with recently published data in which the most 

primitive stromal population in the calvaria, gated as Prx1+Scal+cells, expresses 

Runx2 at low levels 35). On the other hand, a single-cell assay demonstrated that 

CXCL12 abundant reticular (CAR) cells, which largely overlap with the LepR+ cell 

population, express not only Runx2 and Osx, but also peroxisome proliferator-

activated receptor (PPAR ), an essential transcription factor for adipogenesis 36), 

at the mRNA level 23). Interestingly, osteoblastogenesis is enhanced by decreased 

transcriptional activity and haploinsufficiency of PPAR  in BM stromal progenitors 

37, 38). In contrast, adipogenesis is accelerated due to the stromal deletion of Wnt/-

catenin-signaling, an essential signaling pathway for osteoblastogenesis 39). These 

reports suggest that the undifferentiated state of LepR+Runx2-GFPlow cells is 

sustained due to reciprocal inhibition between osteogenic and adipogenic factors. 

Several studies have reported that the lineage differentiation of BM-MSPCs is 

skewed toward osteoblasts by intercellular expression of vascular endothelial growth 

factor A (VEGF-A) 40). In contrast, the adipocyte lineage commitment from BM-

MSPCs is increased by up-regulation of MicroRNA-188 41), deletion of transcription 

factor Foxc 9) and peripheral Leptin/Leptin receptor signaling 10). Further studies will 

clarify the mechanistic details of the cell fate decision of BM-MSPCs.  

 

Our data demonstrate that CFU-F and mesensphere forming capacities are 

rarely observed in the Runx2-GFP−stromal sub-population of LepR+ cells. These 
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results indicate that the LepR+Runx2-GFP− stromal sub-population contains some 

kind of committed cells other than stem cells. Previous studies provide in vivo 

evidence demonstrating that LepR+ cells differentiate into not only osteoblasts but 

also adipocytes with aging and during tissue regeneration processes after injury 5, 6). 

In the process of adipogenesis, the expression levels of Runx2 decrease, as opposed 

to the increase of PPAR40). Furthermore, our immunofluorescence data 

demonstrated that adipocytes are negative for Runx2 (Fig. 1G). These data suggest 

that the LepR+Runx2-GFP− stromal sub-population may be adipocyte-committed 

precursors. Further analysis of this fraction will provide information about the 

process of adipocytogenesis from BM-MSPCs in vivo.  

 

In this study, we demonstrated that the PTH treatment accelerated 

osteoblastogenesis from LepR+Runx2-GFPlow cells. It has been shown that mature 

osteoblasts are continuously replaced by immature precursors in adult bone tissues 

42). Because the LepR+ cells differentiate into osteoblasts in adult bone tissues 5, 6), 

the LepR+Runx2-GFPlow cells contribute to bone remodeling and maintain bone 

homeostasis in the adult phase. On the other hand, it has been reported that PTH 

anabolic effects are exerted by activation of quiescent bone lining osteoblasts 43), 

suggesting that the PTH has multiple targets for bone anabolism. Our results also 

demonstrate that ML-cells appear along the bone surface by PTH treatment. 

Consistent with our results, it is reported that clustered Osx-positive cells are 

observed as pre-osteoblasts in the vicinity of trabecular bone surfaces from PTH-

treated rats 27). Others, by employing proliferating cell labeling experiments, have 

also reported that the PTH-induced thick layered cells proliferate with expression of 

osteoblastic markers such as alkaline phosphatase (ALP), Runx2, osteocalcin and 

osteonectin 29, 30). These results indicate that the PTH-induced osteoblastic 

differentiation is associated with cell cycle progression. Previous studies reported 

that the LepR+ cells are quiescent in adult BM 5, 6). However, the LepR+ cells 

markedly proliferate in response to self-depletion, and lineage differentiation into 

both osteoblasts and adipocytes is accelerated concomitantly in this situation 6). In 

contrast, depletion of the transcription factors Snail and Slug in the skeletal stem 

cells decreases not only proliferative activity but also lineage commitment potential, 

coincidently 44). These results suggest that cell cycle quiescence may be critical for 
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maintaining the undifferentiated state of BM-MSPCs. Further analysis of the 

mechanistic relationship between cell cycle regulation and lineage commitment of 

LepR+Runx2-GFPlow cells will provide a potential therapeutic target for osteoporotic 

patients. 
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Chapter 2 

 

1.   ABSTRACT 

 

Intermittent parathyroid hormone (iPTH) treatment induces bone anabolic 

effects, resulting in healing of osteoporotic bone loss. Genetic lineage tracing 

approaches revealed that iPTH treatment induced osteoblastic differentiation from 

bone marrow (BM) mesenchymal stem and progenitor cells (MSPCs), which are 

marked by leptin receptor (LepR)-Cre. Although these findings suggest that part of 

the PTH-induced bone anabolic action is exerted due to osteoblastic commitment 

from MSPCs, little is known about the mechanistic details of these process in vivo. 

Here, we show that LepR+MSPCs differentiate into type I collagen (Col1)+ mature 

osteoblasts in response to iPTH treatement. Along with the osteoblastogenesis, the 

number of Col1+ mature osteoblasts was increased around the bone surface, although 

most of them resided as quiescent cells. On the other hand, the number of LepR-Cre-

marked lineage was also increased in the vicinity of bone tissue, and the cell cycle 

was accelerated in these cells by iPTH treatment. The expression levels of osterix 

(Osx) and type-I collagen (Col1), markers for osteoblasts, were increased in 

LepR+MSPCs population in response to iPTH treatment. In contrast, the expression 

levels of Cebpb, PPAR, and Zfp467, markers for adipocytes, were decreased in this 

population. Consistent with these results, 5-fluorouracil-induced BM adipogenesis 

was inhibited by iPTH treatment. Then, the bone volume was significantly increased 

in this situation. iPTH treatment of ovariectomized rats exerted remedial action not 

only in osteoporotic bone tissue but also in expanded BM adipose tissue. These 

results indicated that iPTH treatment skews the lineage differentiation of 

LepR+MSPCs cells toward osteoblasts from adipocytes. In this process, the 

LepR+MSPCs proliferate and differentiate into mature osteoblasts through cell cycle 

withdrawal. 
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2.   INTRODUCTION 

 

Bone tissue appears to be silent organ, but in fact it is constantly resorbed by 

osteoclasts and replaced with newly formed bone tissue by osteoblasts. These process 

are called bone remodeling 1, 2). There is evidence that the mature osteoblasts are 

replaced with newly formed osteoblasts within 60 days 3). Therefore, it is generally 

believed that osteoblastic lineage cells are continuously provided by immature 

stromal population, hereafter termed bone marrow (BM) mesenchymal stem and 

progenitor cells (MSPCs), and this process is an indispensable event for the 

maintenance of bone tissue homeostasis. Recent genetic lineage tracing approaches 

revealed that Leptin receptor (LepR)-Cre marks MSPCs, which are localized 

adjacent to the blood vessels in the whole BM cavity 4, 5). LepR+MSPCs differentiate 

into osteoblasts and adipocytes, and they also contribute to chondrocytes, which are 

formed in bone fractured callus. There is evidence that LepR-Cre-labeled BM 

population is largely consistent with the CD31−Ter119−CD45−Nestin(Nes)-GFPlow 

population 4, 6, 7), CAR [CXC chemokine ligand (CXCL)12-abundant reticular] cells 8, 

9), and Prx1-Cre labeled population 10). However, recent studies suggested that 

osteoblasts in the developmental stage are derived not from LepR+MSPCs but from 

Gli1- or Sox9-labeled population, which are localized in metaphyseal BM 11, 12). These 

populations provide LepR+MSPCs in developing BM as well. Although the Gli1+ 

population is diminished in the adult stage, LepR+MSPCs persist in the whole BM 

cavity and work as an origin of stromal lineage throughout life.  

 

It is generally considered that cell cycle quiescence is an essential property for 

stem cell maintenance in each adult tissue 13-15). In response to tissue turnover or 

regeneration of injured tissue, resident stem cells differentiate into descendant cells 

with cell cycle progression, which is suggested a critical event for lineage 

commitment. Consistent with this general view, recent studies indicated that BM-

MSPCs are maintained in a quiescent state in the adult stage and differentiate into 

osteoblasts with proliferation in response to tissue injury 4, 5). Similarly to this 

situation, several studies have found that progenitors of osteoblasts expanded along 

the bone surface in response to intermittent treatment of teriparatide, a bone 
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anabolic agent for osteoporotic patients, composed of amino acid 1–34 of human 

PTH[PTH(1–34)] 16-21). Recent lineage tracing analyses demonstrated that part of the 

PTH anabolic effect is exerted by acceleration of osteoblastogenesis from MSPC 

populations, which are labeled by LepR-Cre or Sox9-CreERT2 21,22). These findings 

raised the intriguing possibility that iPTH treatment may induce entry to the cell 

cycle by MSPC populations from a quiescent state and expand the osteoblastic 

lineage in the process of their differentiation.  

 

Adipocytes and osteoblasts are suggested to originate from the same 

immature stromal population, BM-MSPCs, marked by LepR-Cre. It is known that 

BM adipose tissue is increased with a concomitant in decrease bone volume in 

osteoporotic patients 23-25). This observation suggests that the differentiation fate of 

BM-MSPCs in osteoporotic patients is skewed toward adipocytes from osteoblasts. 

However, although several master transcription factors for osteoblastic and 

adipocytic lineages have been identified, the mechanism of cell fate switching to each 

lineages remains to be elucidated. Previous in vitro culture studies demonstrated 

that osteoblastogenesis was enhanced but adipogenesis was decreased by activation 

of type I PTH/PTH-related peptide (PTHrP) receptor signaling pathway 26-28). 

Consistent with these reports, increased adipose tissue was observed in PTHrP 

heterozygous mice, whose bone volume was significantly decreased compared with 

wild-type mice 29). These phenotypes were also observed in a conditional knockout of 

type I PTH/PTHrP receptor in whole BM stromal populations, suggesting that PTH 

acts directly on the stromal population to regulate cell fate decisions 22, 30). However, 

the effect of iPTH treatment on the variance of osteoblastic and adipocytic gene 

expression in BM-MSPC population has yet to be clarified.  

 

Here we show that PTH-induced osteoblastogenesis is accompanied by cell 

cycle progression of BM-MSPCs, which are localized around bone tissue. In addition, 

our data revealed that osteoblastic and adipogenic gene expression are increased and 

decreased, respectably, in the BM-MSPC population in response to iPTH treatment. 

We also examined the effect of iPTH treatment on accelerated adipocytic 

differentiation using a cancer chemotherapy agent and ovariectomy to estimate the 

cell fate switching capacity. We observed that iPTH treatment dramatically reduced 
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adipose tissue in the both conditions. 
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3.   EXPERIMENTAL PROCEDURES 
 

3.1   Experimental Animals 

C57BL/6 mice were perchased from Japan SLC. B6.129-Leprtm2(cre)Rck/J 

(LepR-Cre) and B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J mice were 

purchased from Jackson Laboratory (Bar Harbor, ME). Col1(2.3)-Gfp 31) mice and 

Nestin-Gfp 48,49) mice were kindly provided by K. Matsuo in Keio University and G. 

Enikolopov in stony brook university, respectively. Femail Fischer 344/DuCrlCrli 

rats were perchased from Charles River Japan. All animals were maintained in 

pathogen-free conditions in animal facilities certified by the Animal Care and Use 

Committees of Matsumoto Dental University or Asahi Kasei Pharma Corp., and 

animal protocols were approved by those committee. All animal studies were 

performed in accordance with the Guidelines of the Matsumoto Dental University or 

Asahi Kasei Pharma Corp. Animal Care Committee. 

 

3.2   Antibodies and reagents 

 The primary antibodies used were anti-Perilipin (D1D8) (Cell Signaling 

Technology, Danvers, MA); APC-anti-CD45 (30-F11), APC-anti-Ter-119 (Ter119), 

APC-, PE- or FITC-anti-Ki67 (SolA15) (all from eBioscience, Waltham, MA); Alexa 

Fluor 647-anti-CD31/PECAM-1 (MEC13.3) (Biolegend, San Diego, CA); biotin-anti-

LepR and biotin-normal goat IgG-control (all from R&D systems, Minneapolis, MN). 

The secondary antibodies used were PE-Streptavidin (Beckman Coulter Life 

Sciences, Brea, CA); Alexa Fluor 647 donkey anti-rabbit IgG (Invitrogen, Waltham, 

MA). Nuclei were stained with Hoechst 33342 (Sigma-Aldrich, St. Louis, MO), TO-

PRO-3 iodide (642/661) (Molecular Probes, Waltham, MA), Propidium Iodide 

Solution (Biolegend) or SYTO 9 (485/498) (Invitrogen).  

 

3.3   Microscopy imaging 

    Mice were perfused with 4% paraformaldehyde (PFA) for fixation. Femora 

were removed and further fixed with 4% PFA for 24 hours at 4℃, incubated in 10%, 

20% and 30% sucrose each for over than 2 hours at 4℃ for cryoprotection and 

embedded in SCEM medium (SECTION-LAB, Hiroshima, Japan). Sections, 20-m-

thick, were prepared using Kawamoto’s film method 50. Z-stack confocal projection 
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images were obtained from 2-m interval images of 20-m thick sections. 

Fluorescence images were acquired using a laser-scanning confocal microscope 

(LSM510) equipped with Plan-Apochromat (20×/0.8), ZEN and Axiovision software 

(all from Carl Zeiss, Oberkochen, Germany). The left tibiae were removed from rats 

and dissected free of soft tissue, fixed in 70% ethanol, stained with Villanueva bone 

stain, dehydrated in a graded series of ethanol, defatted in acetone and embedded in 

polymethyl methacrylate (Wako, Osaka, Japan) without decalcification. Then, the 

samples were fixed on plastic slides and 20-m-thick transverse sections were 

ground at a level 3 mm proximal to the tibiofibular junction from each tibia using a 

micro grinding system (MG-4000, Exakt Technologies, Oklahoma, OK). Bright-field 

images were acuiered using a Lica DM5500B (Leica, Wetzlar, Germany) equipped 

with a RETIGA 2000R FAST1394 color CCD camera (Q IMAGING, Surrey, BC) and 

Image-Pro Plus (Media Cybernetics, Rockville, MD). Bone area (Cortical area / Total 

area %) from rat tibiae was measured by using Osteoplan (Carl Zeiss). The area of 

BM adipose tissue (Adipose area / Total area %) from rat tibiae was mesured the 

middle square region (276 m × 276 m) of the BM cavity using by Vidas (Carl Zeiss).  

 

3.4   PTH and 5-FU treatment 

Three-week- to 18-month-old mice were injected intraperitoneally with 

Human PTH(1–34) (80 g/kg/24 or 12 h) (Asahi Kasei Phama Co. Ltd., Tokyo, Japan) 

for 10 days. To induce adipocytogenesis in vivo, 5-FU (Sigma-Aldrich) (250 mg/kg) 

was injected intrave-niously into mice. PTH treatment was started at 30 min after 

5-FU injection. Twenty-four hours after the final PTH injection, mice were sacrificed 

and used for analyses. Six-month-old rats were ovariectomized or sham-operated as 

reported previously 51), and bled for 6 month to establish osteoporosis. OVX rats were 

divided into three groups. The sham  group and one of OVX groups were injected 

subcutaneously with saline as a vehicle. The remaining two OVX groupes were 

injected subcutaneously with PTH(1–34) [60 g/kg/week] and [20 g/kg × 3 

times/week] for 6 month, respectively. Three days after the final PTH injection, rats 

were sacrificed and used for analyses. 

 

3.5   EdU incorporation experiments 

    Mice were injected intraperitoneally with EdU (Molecular probes) (1 mg), and 
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sacrificed after 6 hours. EdU-positive cells were detected using Click-iT Plus EdU 

Alexa FluorTM 647 Imaging Kit (Molecular probes), in accordance with the 

manufacturer’s recommendations. 

 

3.6   Preparation of BM cell suspension 

BM cells were flushed from tibiae and femora with HBSS (Gibco, Waltham, 

MA) containing 0.1% collagenase IV (Gibco), 0.2% Dispase (Gibco) and 20U/ml 

DNase (Worthington Biochemical, Lakewood, NJ) and digested for 30 min at 37°C. 

BM cells were washed with PBS and suspended with PBS containing 2% FBS, 1 mM 

EDTA. Before performing the cell sorting, the BM suspension were inqubated with 

anti-CD31, -CD45 and -Ter119 microbeads, and depleated hematopoietic and 

endotherial cells using MACS LD Column (all from Miltenyi Biotec, Bergisch 

Gladbach, Germany).  

 

3.7   Cell sorting and flow cytometry 

Cell sorting experiments were performed using an FACSAria III equipped 

with FACS Diva6.1.3 software (all from BD Biosciences, San Jose, CA). Flow 

cytometric analyses were carried out using a Cytomics FC 500 flow cytometer 

equipped with CXP software (all from Beckman Coulter Life Sciences). Dead cells 

and debris were excluded by FSC, SSC, DAPI (Dojindo, Kumamoto, Japan) and 

Fixable Viability Dy4 eFluor 780 (eBioscience) staining profiles. Data were analysed 

with FlowJo software (BD Biosciences). 

 

3.8   RNA isolation and quantitative real-time PCR 

Sorted cells were collected to -MEM containing 10% FBS (all from Sigma-

Aldrich). The cells were wash with PBS, and reverse transcription of mRNA and 

amplification of cDNA were performed by using CellAmpTM Whole Transcriptome 

Amplification Kit (Real Time) Ver.2 (TAKARA, Shiga, Japan). Quantitative real-time 

PCR was performed using Fast SYBR Green and Applied Biosystems StepOnePlusTM 

(all from Applied Biosystems, Waltham, MA). Gene expression data was normalized 

to Gapdh. The sequences of primers for each gene were as follows:  

 Forward Reverse 

Gapdh TGTGTCCGTCGTGGATCTGA TTGCTGTTGAAGTCGCAGGAG 

Col1a1 TCAGTGCAATTGTGTTGCTGAAAG GATACCAAACTGGGCGT GCTG 

Fabp4 TGGGAACCTGGAAGCTTGTCTC GAATTC CACGCCCAGTTTGA 

https://en.wikipedia.org/wiki/Bergisch_Gladbach
https://en.wikipedia.org/wiki/Bergisch_Gladbach
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Pparg GGAGCCTAAGTTTGAGTTTGCTGTG TGC AGCAGGTTGTCTTGGATG 

Sp7 AGGCCTTTGCCAGTGCCTA GCCAG ATGGAAGCTGTGAAGA 

Zfp467 TTCCCAGAA GCATCCTTACCTATC CAAACAACCTTTATGGCCTGTTCA 

Alpl ACACCTTGACTGTGGTTACTGCTGA CCTTGTAGCCAGGCCCGTTA 

Bglap AGCAGCTTGGCCCAGACCTA TAGCGCCGGAGTCTGTTCACTAC 

Cebpb TGATGCAATCCGGATCAA CACGTGTGTTGCGTCAGTC 

 

3.9   Microcomputed tomography analysis 

Femora were fixed in 70% ethanol at 4℃. Three-dimensional (3D) recon- 

structions of femora were taken using a composite X-ray analysis system 

(ScanXmate-A080; Comscan Tecno, Kanagawa, Japan). Bone morphometric analysis 

was performed with TRI/3D-Bon (Ratoc System Engineering Co., Tokyo, Japan). We 

measured the parameters of bone volume over total volume (BV/TV), trabecular 

thickness (Tb.Th.), trabecular number (Tb.N.), and trabecular separation (Tb.Sp.). 

 

3.10    Statistics 

Statistical analyses were performed using GraphPad Prism7 (GraphPad 

Software Inc., La Jolla, CA). The data were analysed by the D’Agostino-Pearson test 

(n≧8) or the Shapiro-Wilk test (n<8) to evaluate normal distribution. To compare 

two groups, equality of the two variances was assessed using F-test. When the data 

sets met both the test requirements for distribution and variance, Student’s test was 

used. When the data did not meet one of the test requirement, non-parametric, 

Mann-Whitney U test was used. To compare multiple groups, one-way ANOVA with 

Tukey’s multiple comparisons test was performed. The results were expressed as 

mean ± SD. Experiments were performed three times and similar results were 

obtained. p<0.05 was considered statistically significant. 
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4.    RESULTS 

 

4.1    iPTH treatment induces differentiation of LepR+MSPCs into mature 

osteoblasts. 

  Based on a genetic lineage tracing approach, it was demonstrated that 

iPTH treatment induces the differentiation of LepR+MSPCs into early-stage 

osteoblasts positive for Runx2 transcription factor 21). To clarify whether the 

maturation of osteoblastogenesis is accelerated in this situation, we generated LepR-

Cre/ROSA26-loxP-stop-loxP-tdTomato(Tomato)/type I collagen [Col1(2.3)]-GFP 

mice, in which LepR+MSPC-derived Col1+ mature osteoblasts can be detected as 

Tomato and GFP double-positive cells (yellow cells) 4, 31). Corresponding with 

previous studies, trabecular bone volume was increased by iPTH treatment (80 

g/kg/day) for 10 days (Table 1) 20, 21, 32, 33). Histological and fluorescence-activated cell 

sorting (FACS) analyses revealed that LepR+MSPC-derived mature osteoblasts were 

significantly increased in response to iPTH treatment (Fig. 1A and Table 2). The 

osteoblast lineage commitment from LepR-Cre/Tomato+ cells was further accelerated 

by increasing frequency of iPTH injection (80 g/kg/12 hr for 10 days) (Fig. 1B and 

Table 3). These results indicated that iPTH treatment facilitated osteoblastic 

differentiation not only in early stage but also in late maturation. 

 

4.2    LepR+MSPCs proliferate in response to iPTH treatment and differentiate 

into mature osteoblasts through cell cycle withdrawal. 

Next, we analyzed the effect of iPTH treatment on number of mature 

osteoblasts along the endosteal surface using Col1(2.3)-GFP mice. Histological 

analyses revealed that the iPTH treatment significantly increased the number of the 

Col1(2.3)-GFP+ mature osteoblasts (Fig. 2A and Table 4). Of note, Ki67-positive 

proliferating mature osteoblasts were hardly observed in control bone tissue and 

were not increased by iPTH treatment (Fig. 2A and Table 5). Similarly, there was no 

significant difference in the number of 5-ethynyl-2’-deoxyuridine (EdU)-incorporated 

Col1(2.3)-GFP+ mature osteoblasts between control and iPTH-treated mice (Fig. 2B 

and Table 6). In contrast, the number of Ki67- and EdU-negative mature osteoblasts 

were significantly increased in iPTH-treated group (Table 5,6). These results 



 45 

suggestd that iPTH treatment increased the number of mature osteoblasts but did 

not accelerate their cell cycle progression.  

 

Next, we determined the effect of iPTH treatment on proliferation of 

LepR+MSPCs. Consistent with our previous report, iPTH treatment increased LepR-

Cre/Tomato+ cells in the vicinity of the bone tissue (Fig. 3) 21). The number of Ki67-

expressing LepR-Cre/Tomato+ cells along the bone surface was significantly 

increased in the iPTH-treated group (Fig. 2C and Table 7). FACS analysis showed 

that the frequency of proliferating cells in the whole BM LepR-Cre/Tomato+ 

population was significantly increased by iPTH treatment (Table 8). Altogether, 

these results indicated that, in response to iPTH treatment, the LepR+MSPCs 

proliferated and differentiated into mature osteoblasts through cell cycle withdrawal.  

 

4.3    Lineage differentiation of LepR+MSPCs is skewed toward osteoblasts from 

adipocytes by iPTH treatment. 

Because LepR+MSPCs have the potential to differentiate into both 

osteoblasts and adipocytes 4, 5), we next analyzed the effect of iPTH treatment on the 

expression levels of both lineage markers in MSPCs. There is evidence that LepR+ 

population largely overlaps with stromal Nestin(Nes)-GFPlow population 4, 6, 7), 

therefore, we sorted the Nes-GFP and LepR double-positive BM population from 

Nes-GFP mice with or without iPTH treatment. Real-time PCR experiments 

revealed that osteoblast markers Osterix (Osx)/SP7 and Col1 were significantly 

increased by iPTH treatment, although alkaline phosphatase (ALP) expression was 

significantly decreased (Table 9). In contrast, the levels of adipocytic markers, 

including peroxisome proliferator-activated receptor- (PPAR), CCAAT enhancer-

binding protein- (Cebp), and zinc finger protein 467 (Zfp467), were significantly 

decreased in this situation (Table 10). However, in consistent to these other 

adipocytic markers, Fabp4 expression was dramatically increased by iPTH 

treatment (Table 10). These results indicated that the genetic profile of LepR+MSPCs 

tended to be switched to an osteoblastic lineage from an adipocytic lineage by iPTH 

treatment. 

 

4.4    iPTH treatment suppresses induced-adipocytic differentiation of LepR+ 
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MSPCs 

  Previous studies demonstrated that BM adipocytes were derived from 

LepR+MSPCs as well 4, 5, 10). Because we found that several adipocytic markers were 

suppressed in LepR+MSPCs by PTH treatment, we next observed BM adipocytes in 

these conditions. Perilipin-positive adipocytes were significantly decreased by iPTH 

treatment (Fig. 4A and Table 11). It is known that BM adipocytic differentiation is 

induced by injection of 5-fuluorouracil (5-FU), which is used for cancer chemotherapy 

34, 35). 5-FU treatment dramatically induced adipocytic differentiation in BM in a 

time-dependent manner (Fig. 5), but 5-FU-induced adipogenesis was significantly 

inhibited by iPTH treatment (Fig. 4B and Table 12). Even in 5-FU-treated conditions, 

bone volume was increased in the iPTH-treated group (Table 13). These data 

suggested that iPTH treatment switched the differentiation of LepR+MSPCs toward 

osteoblasts, resulting in a reduction of 5-FU-induced adipogenesis. 

 

BM adipose tissue was suggested to be increased in postmenopausal 

osteoporotic patients 24, 36). To test whether iPTH treatment has the potential to 

restore osteoporosis-induced fatty BM tissue, we performed iPTH treatment on 

ovariectomized (OVX) rats. Six month-old OVX rats were bred for addition 6 months 

in order to induce the onset of osteoporosis before the start of iPTH treatment. The 

OVX operation significantly decreased the relative cortical area and simultaneously 

increased adipocytes in the BM cavity compared to sham controls (Table 14). Both 

iPTH dosing schedules [60 g/kg/week or 20 mg/kg × 3 times/week, designated as 

iPTH (60) and iPTH (20 × 3), respectively] increased relative cortical area to the 

same level as the sham control (Table 14). The healing effect on bone tissue in iPTH 

(20 × 3) treatment was tended to be higher than that in iPTH (60) treatment (Table 

14). As opposed to bone tissue, OVX-induced BM adipose tissue was significantly 

decreased by iPTH treatments with both iPTH (60) and iPTH (20 × 3) treatment 

(Table 15). Importantly, the healing effects on adipose tissue in iPTH (20 × 3) 

treatment also tended to be higher than that in iPTH (60) treatment (Table 15). 

These results suggested that the greater increase in PTH induced-osteoblastogenesis 

in MSPCs, the greater the decrease in adipogenesis.  

 

Overall, our findings indicated that the iPTH treatment on osteoporotic 
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patients exerted remedial action not only in osteoporotic bone tissue but also in the 

adipose BM cavity, through lineage switching of BM-MSPCs into osteoblasts. 
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Table 1 Effect of PTH(1-34) treatment on the morphometric parameters of bone tissue 

Parameters (units) PTH(1-34) 

Mean±SD 

BV/TV (%) ↑ ** 

Tb.Th. (m) ↑ ** 

Tb.N. (mm-1) ↑ ** 

Tb.Sp. (m) ↓ ** 

Five-week-old mice were treated with vehicle or iPTH(1-34) (80 g/kg/24 h) for 10 days. Quantification 

of bone parameters: BV/TV, bone volume over total volume; Tb.Th., trabecular thickness; TbN., 

trabecular number; Tb.Sp., trabecular separation. n=6–7. **p < 0.01, ***p < 0.001. Data are shown as 

mean ± SD. 
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Figure 1. LepR+MSPCs differentiated into mature osteoblasts by PTH(1-34) treatement. 

Three to 6-week-old LepR-Cre/Tomato/Col1(2.3)-GFP mice were treated with vehicle or PTH(1-34) 

(80 mg/kg) at every 24 h (A) or 12 h (B) for 10 days. Mimic images of bone sections from vehicle and 

PTH(1-34) treated mice. Nuclei were visualized using Hoechst 33342 (blue). LepR-Cre/Tomato+ 

Col1(2.3)-GFP+ cells (yellow). 
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Table 2 Effect of PTH(1-34) treatment on osteoblastogenesis of LepR+MSPCs 

Parameters PTH(1-34) 

Mean±SD 

LepR-Cre/Tomato+/Col1(2.3)-GFP+ cells / mm2 ↑ * 

LepR-Cre/Tomato+/Col1(2.3)-GFP+ cells / femur (%) ↑ * 

LepR-Cre/Tomato+/Col1(2.3)-GFP+ cells (×103) / femur  ↑ ** 

Three-week-old LepR-Cre/Tomato/Col1(2.3)-GFP mice were treated with vehicle or PTH(1-34) 

(80 mg/kg) at every 24 h for 10 days.Quantification of the number of LepR-Cre/Tomato+Col1(2.3)-GFP+ 

cells in an area of 2 mm2 in 500 mm below from growth plate (first line) and the frequency (second line) 

and absolute number (third line) of LepR-Cre/Tomato+Col1(2.3)-GFP+cells analyzed by FACS. n=4–5. 

*p < 0.05, **p < 0.01. Data are represent-ed as mean ± SD. 
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Table 3 Effect of PTH(1-34) treatment on osteoblastogenesis of LepR+MSPCs 

Parameters PTH(1-34) 

Mean±SD 

LepR-Cre/Tomato+/Col1(2.3)-GFP+ cells / mm2 ↑ ** 

Six-week-old LepR-Cre/Tomato/Col1(2.3)-GFP mice were treated with vehicle or PTH(1-34) (80 mg/kg) 

at every 12 h for 10 days. Quantification of the number of LepR-Cre/Tomato+Col1(2.3)-GFP+ cells in an 

area of 2 mm2 in 500 mm below from growth plate. n=5. **p< 0.01. Data are represented as mean ± SD. 
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Figure 2. LepR+MSPCs were induced cell cycle progression by PTH(1-34) treatment and differentiated 

into mature osteoblasts with cell cycle withdrawal. 

Five to Eight-week-old Col1(2.3)-GFP (A.B) and LepR-Cre/Tomato mice (C) were treated with vehicle 

or PTH(1-34) (80 mg/kg/24 h) for 10 days. Mimic images of bone sections from vehicle and PTH(1-34) 

treated mice. Nuclei were visualized using TO-PRO-3 (blue)(A), propidium iodide (PI) (blue) (B) or 

SYTO-9 (blue) (C).  
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Table 4 Effect of PTH(1-34) treatment on the number of mature osteoblasts 

Parameters PTH(1-34) 

Mean±SD 

Col1(2.3)-GFP+ cells / mm2 ↑ *** 

Six-week-old Col1(2.3)-GFP were treated with vehicle or PTH(1-34) (80 mg/kg/24 h) for 10 days. 

Quantification of the absolute number of Col1(2.3)-GFP+ cells in an area of 1 mm2 in 100 mm below 

from growth plate. n=6. ***p < 0.001. Data are shown as mean ±SD. 
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Table 5 Effect of PTH(1-34) treatment on the proliferation of mature osteoblasts  

Parameters PTH(1-34) 

Mean±SD 

Ki67+ Col1(2.3)-GFP+ cells / mm2 -- NS 

Ki67- Col1(2.3)-GFP+ cells / mm2 ↑ * 

Six-week-old Col1(2.3)-GFP were treated with vehicle or PTH(1-34) (80 mg/kg/24 h) for 10 days. 

Quantification of the absolute number of Ki67+Col1(2.3)-GFP+ cells (first line) and Ki67−Col1(2.3)-GFP+ 

cells (second line) in an area of 1 mm2 in 100 mm below from growth plate. n=7. *p < 0.05, NS: not 

significant. Data are shown as mean ± SD. 
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Table 6 Effect of PTH(1-34) treatment on the proliferation of mature osteoblasts 

Parameters PTH(1-34) 

Mean±SD 

EdU+ Col1(2.3)-GFP+ cells / mm2 -- NS 

EdU- Col1(2.3)-GFP+ cells / mm2 ↑ ** 

Five-week-old Col1(2.3)-GFP were treated with vehicle or PTH(1-34) (80 mg/kg/24 h) for 10 days. 

Quantification of the absolute number of EdU+Col1(2.3)-GFP+ cells (first line) and EdU−Col1(2.3)-GFP+ 

cells (second line) in an area of 0.25 mm2 under the growth plate. Two sections from mouse femur were 

used for the quantifications. n=3. **p < 0.01, NS: not significant. Data are shown as mean ± SD. 
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Figure 3. LepR-Cre/Tomato+ cells were increased near the bone surface in response to PTH(1-34) 

treatment. 

Eight-week-old LepR-Cre/Tomato mice were treated with vehicle or iPTH(1-34) (80 mg/kg/24 h) for 10 

days. Mimic images of bone sections. Nuclei were visualized with TO-PRO-3 (blue). 
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Table 7 Effect of PTH(1-34) treatment on the proliferation of LepR+MSPCs 

Parameters PTH(1-34) 

Mean±SD 

Ki67+ LepR-Cre/Tomato+ cells / mm2 ↑ ** 

Eight-week-old LepR-Cre/Tomato were treated with vehicle or PTH(1-34) (80 mg/kg/24 h) for 10 days. 

Quantification of the absolute number of Ki67+LepR-Cre/Tomato+ cells in an area of 0.25 mm2 under 

the growth plate. n=10. **p < 0.01. Data are shown as mean ± SD.  
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Table 8 Effect of PTH(1-34) treatment on the proliferation of LepR+MSPCs 

Parameters PTH(1-34) 

Mean±SD 

Ki67+ LepR-Cre/Tomato+ cells / femur (%) ↑ * 

8-week-old LepR-Cre/Tomato were treated with vehicle or PTH(1-34) (80 mg/kg/24 h) for 10 days. 

Quantification of the frequency of Ki67+ cells in LepR-Cre/Tomato+ cells analyzed by FACS. n=8.*p < 

0.05. Data are shown as mean ± SD. 
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Table 9 Effect of PTH(1-34) treatment on the expression levels of osteoblastic markers in 

LepR+MSPCs 

Parameters (relative mRNA) PTH(1-34) 

Mean±SD 

Col1a1 ↑ **** 

Sp7 ↑ **** 

Bglap -- NS 

Alpl ↓ *** 

CD45−Ter119−CD31−LepR+Nestin-GFP+ BM stromal population was sorted from 2-year-old Nestin-GFP 

mice with or without PTH(1-34) treatment (80 mg/kg/24 h) for 10 days. Quantitative real-time PCR 

analysis for mRNA expression of osteoblastogenesis-related factors (Col1a1, Sp7, Bglap, Alpl). Whole 

BM cells from 3 mice in each group were mixed and use for cell sorting. ***p < 0.001, ****p < 0.0001, 
NS: not significant. Data are shown as mean ± SD. 
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Table 10 Effect of PTH(1-34) treatment on the expression levels of adipocytic markers in 

LepR+MSPCs 

Parameters (relative mRNA) PTH(1-34) 

Mean±SD 

Pparg ↓ *** 

Cebpb ↓ * 

Zfp467 ↓ *** 

Fabp4 ↑ *** 

CD45−Ter119−CD31−LepR+Nestin-GFP+ BM stromal population was sorted from 2-year-old Nestin-GFP 

mice with or without PTH(1-34) treatment (80 mg/kg/24 h) for 10 days. Quantitative real-time PCR 

analysis for mRNA expression of adipogenesis-related factors (Pparg, Cebpb, Zfp467, Fabp4). Whole 

BM cells from 3 mice in each group were mixed and use for cell sorting.  *p < 0.05, ***p < 0.001. Data 

are shown as mean ± SD. 
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Figure 4. PTH(1-34) treatment suppressed adipocytic differentiation in BM cavity. 

Six-week-old mice were treated with vehicle or iPTH(1-34) (80 mg/kg/24 h) for 10 days with (B) or 

without (A) 5-FU (250 mg/kg) pre-treatment. Mimic images of bone sections from vehicle and PTH(1-

34) treated mice. Perilipin+ adipocytes (white). Nuclei were visualized using PI (red). 
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Table 11 Effect of PTH(1-34) treatment on adipogenesis of MSPCs 

Parameters PTH(1-34) 

Mean±SD 

Perilipin+ adipocytes / mm2 ↓ * 

Six-week-old mice were treated with vehicle or iPTH(1-34) (80 mg/kg/24 h) for 10 days. Quantification 

of the absolute number of Perilipin+ adipocytes in an area of 2 mm2 under the growth plate. n=4. *p < 

0.05. Data are shown as mean ± SD. 
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Figure 5. 5-FU injection induced adipocytic differentiation in BM cavity 

Mimic images of bone sections on 5-FU (250 mg/kg) injected 6-week-old mice at the indicated time 

points stained with anti-Perilipin antibody (white). Nuclei were visualized by PI (red). 
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Table 12 Effect of PTH(1-34) treatment on 5-FU-induced adipogenesis of MSPCs 

Parameters PTH(1-34) 

Mean±SD 

Perilipin+ adipocytes / mm2 ↓ * 

Six-week-old mice were treated with vehicle or iPTH(1-34) (80 mg/kg/24 h) for 10 days with 5-FU (250 

mg/kg) pre-treatment. Quantification of the absolute number of Perilipin+ adipocytes in an area of 4 

mm2 in 1 mm below from growth plate. n=4. *p < 0.05. Data are shown as mean ± SD.  
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Table 13 Effect of PTH(1-34) treatment on the morphometric parameters of bone tissue  

Parameters (units) PTH(1-34) 

Mean±SD 

BV/TV (%) ↑ ** 

Tb.Th. (m) -- NS 

Tb.N. (mm-1) ↑ *** 

Tb.Sp. (m) ↓ ** 

Six-week-old mice were treated with vehicle or iPTH(1-34) (80 mg/kg/24 h) for 10 days with 5-FU (250 

mg/kg) pre-treatment. Quantification of bone parameters: BV/TV, bone volume over total volume; 

Tb.Th., trabecular thickness; TbN., trabecular number; Tb.Sp., trabecular separation. n=4. **p < 0.01, 
***p < 0.001. NS: not significant. Data are shown as mean ± SD.  

  



 66 

Table 14 Effect of PTH(1-34) treatment on the cortical area in ovariectomized(OVX) mice 

Parameters (unit) Sham 

Mean±SD 

OVXa, 

Mean±SD 

OVX+PTH(60)a,b 

Mean±SD 

OVX+PTH(20×3)a,b 

Mean±SD 

Cortical area (%)  ↓ *** -- NS -- NS 

  ↑ ** ↑ **** 

Six-month-old rats were ovariectomized or sham-operated and bled for 6 months to establish 

osteoporosis. Rats were treated with vehicle or PTH(1-34) [60 mg/kg/week: PTH(60) or 20 mg/kg × 3 

times/week: PTH(20x3)] for 6 months. Quantification of cortical area. a: versus vehicle-treated sham 

group. b: versus vehicle-treated OVX group. n=7. **p < 0.01, ***p < 0.001, ****p < 0.0001. Data are 

shown as mean ± SD. 
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Table 15 Effect of PTH(1-34) treatment on the adipose tissue area in ovariectomized(OVX) mice 

Parameters (unit) Sham 

Mean±SD 

OVXa 

Mean±SD 

OVX+PTH(60)a,b 

Mean±SD 

OVX+PTH(20×3)a,b 

Mean±SD 

Adipose tissue area (%)  ↑ * -- NS -- NS 

  -- NS ↓ * 

Six-month-old rats were ovariectomized or sham-operated and bled for 6 months to establish 

osteoporosis. Rats were treated with vehicle or PTH(1-34) [60 mg/kg/week: PTH(60) or 20 mg/kg × 3 

times/week: PTH(20x3)] for 6 months. Quantification of adipose tissue area. a: versus vehicle-treated 

sham group. b: versus vehicle-treated OVX group. n=7. **p < 0.01, NS: no significant. Data are shown 

as mean ± SD. 
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Figure 4 

 

Figure 4. Effect of PTH(1-34) treatment on lineage differentiation of LepR+MSPCs. 

iPTH(1-34) treatment induces osteoblastogenesis of LepR+MSPCs. In this process, LepR+MSPCs 

proliferate and differentiate into mature osteoblasts through cell cycle withdrawal. In contrast, 

adipocytic differentiation is suppressed by iPTH(1-34) treatment suggesting that part of the bone 

anabolic effect of iPTH(1-34) treatment is exerted by lineage switching toward osteoblasts from 

adipocytes. 
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5.    DISCUSSION 

 

Genetic lineage tracing analyses provide a way to identify the BM-MSPC 

population and their progeny in vivo. This experimental approach also permitted to 

observation of the effect of iPTH treatment on lineage differentiation of BM-MSPCs. 

Here, we demonstrated that the BM-MSPC population proliferated after iPTH 

treatment, and subsequently became mature osteoblasts in a quiescent state. 

Concomitantly, adipocytic differentiation was attenuated in this BM milieu, 

suggesting that iPTH treatment switches lineage differentiation of BM-MSPCs 

towered osteoblasts from adipocytes. 

 

There is evidence suggesting that iPTH treatment increases the number of 

mature osteoblasts, however, the mechanism of this process is still controversial 33). 

Previous studies provided in vivo data that showed iPTH treatment attenuated 

apoptosis of mature osteoblasts 37, 38) or activated quiescent bone lining cells 39, 40), 

resulting in increased of mature osteoblasts. Consistent with this, our results 

demonstrated that mature osteoblasts increased after iPTH treatment, despite the 

fact that Ki67 expression was rarely observed in their nuclei. These findings 

indicated that PTH-induced expansion of mature osteoblasts was not mediated by 

their proliferation. Furthermore, previous in vitro studies demonstrated that PTH 

treatment induced growth arrest in mature osteoblasts by mediating the suppression 

of Cyclin D1, which is required for cell cycle progression 41, 42). As oppose to mature 

osteoblasts, our results indicated that LepR+MSPCs proliferate in response to iPTH 

treatment, which was consistent with previous data in which PTH increases cell 

cycle progression of immature osteoblasts 16, 18). Of note, it has been suggested that 

PTH-exerted cell-cycle regulation differs depending on the differentiation stage of 

osteoblasts 17). LepR+MSPCs differentiate into mature osteoblasts by iPTH 

treatment, as demonstrated by our genetic lineage tracing analyses. Altogether, 

these results suggested that the expansion and osteoblastic differentiation of 

immature stromal population are at least one of the mechanisms responsible for 

increased mature osteoblasts by iPTH treatment. 
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Our data demonstrated that markers for osteoblasts, Col1a1 and Osx/SP7, 

were increased, but adipocytic markers, Pparg, Cenpb and Zfp467, were decreased 

in purified BM-MSPC populations after iPTH treatment. In accordance with these 

results, Perilipin+ BM adipocytes were significantly decreased in these conditions. 

Additionally, iPTH treatment suppressed 5-FU or OVX-induced adipocytogenesis in 

the BM cavity. It is noteworthy that the bone volume was increased in this situation. 

Consistently, resent reports indicated that BM adipose tissue was reduced in 

idiopathic osteoporotic patients following PTH therapy 30). Altogether, these results 

suggested that PTH provoked stromal lineage switching toward osteoblasts from 

adipocytes, and the effect was exerted on the BM-MSPC population, but not on 

osteoblasts or adipocytes. However, the osteoblastic marker ALP or adipocytic 

marker Fabp4 were exactly showed opposite behavior in our real-time PCR analysis. 

Of note, recent reports demonstrated that BM adipocytogenesis was accelerated 

after the discontinuation of iPTH treatment 22). The experimental mice used for our 

real-time PCR analysis was sacrificed 24 hours after final PTH injection, and the 

serum half-life of PTH(1–34) is within 15 min 43, 44). Therefore, the adipocytic 

differentiation pathway might already be induced in our sorted BM-MSPC 

population. 

 

The LepR-Cre-marked BM stromal population was suggested to be 

maintained in a quiescent state at steady-state 5). Our Ki67 immunostaining 

approach revealed that the proliferating LepR+MSPCs were observed in the vicinity 

of the bone surface as multilayered cells after iPTH treatment. Stromal colony 

forming potential (known as colony-forming unit-fibroblasts [CFU-F]) are considered 

as the self-renewal capacity of stem cells 45). A previous study demonstrated that 

iPTH treatment increased CFU-F activity in endosteal stromal progenitor but not 

those in the central BM 46). These results may indicate that iPTH induces self-renew 

to replenish differentiated LepR+MSPCs into osteoblasts in the endosteum. It is 

noteworthy that PTH-induced proliferative activity on LepR+MSPCs was exerted 

only on the bone surface but not in the central area of the BM cavity, although the 

LepR-Cre marked stromal population was suggested to be localized to the whole BM 

cavity adjacent to the sinusoid 47). The CFU-F assay revealed that the stem cell 

capacity was enriched in the area near by the bone surface in normal mice 46), 
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suggesting that the regulatory milieu for stem cell maintenance may be localized 

there. Further analysis of the mechanistic details of the regulatory BM environment 

for the stromal population will provide valuable information for therapeutic 

targeting for bone loss associated with osteoporosis and aging. 
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