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Summary

  In the present study, we showed that activation ofmetabotropic glutamate receptors in rat mesen-

cephalic trigminal (Mes V) neurons (which are important in the genesis and control of oral-motor

activities) can modulate hyperpolarization-activated inward current (Ih). Whole-cell recordings

were obtained from rat Mes V neurons, and Ih was induced by a hyperpolarizing current or voltage

pulses. Application of ACPD, which is a group I and ll mGluRs agonist, suppressed the voltage-

and time-dependent voltage sag under current-clamp recording, and suppressed the steady-state

inward current under voltage-clamp recording, suggesting that it inhibited Ih. Further investigation

revealed that group ll mGluRs activation and the release of intracellular Ca2' mediated ACPD--in-

duced inhibition of Ih. Additionally, low-frequency (Åq10Hz) resonant properties exhibited at mem-

brane potentials ranging from resting potential to hyperpolarization were substantially reduced by

ACPD, indicating that modulation ofIh by mGluRs activation induces substantial changes in the fre-

quency preference with which neurons respond to synaptic inputs.

Introduction

  Mes V neurons are critically involved in the regulation of oral-motor activities. Their unique loca-

tion within the brainstem is consistent with the role of sensory neurons or integrative interneurons,

and they project axons to motoneurons and premotoneurons that control the jaw musculaturei'2). In a

recent study, inward rectification manifesting as a depolarizing sag was prominent in Mes V neu-

rons, suggesting that Ih (the slow inward rectifying conductance underlying this membrane prop-

erty) contributes to the subthreshold and firing behavior ofMes V neurons3'. The available evidence

suggests that Ih activation at resting membrane potential and the presence of low-frequency reso-

nance at potentials ranging from rest to hyperpolarization allow these neurons to fire not only at de-

polarized membrane potentials but also within the resonant frequency range, via amplification of

the membrane drive potentials consisting ofa hyperpolarizing component3'.

  Endogenously released neurotransmitters have been shown to modulate the firing characteristics

and cell excitability ofneurons via modulation ofIh conductances in other neuronal systems`'. As for

Mes V neurons, recent study demonstrated that the membrane excitability of Mes V neurons was

regulated by 5-HT receptor activation via suppressive modulation of persistent sodium (INap) con-
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ductance5', which is critical for subthreshold voltage oscillations and high-frequency discharge of

Mes V neurons6'7). Despite such studies are essential for elucidating how various neuromessengers

that are involved in modulation of ion conductances of Mes V neurons work in concert to modulate

oral-motor activities, there have been no studies related to the modulation of Ih in Mes V neurons.

In a previous immunohistochemical study, metabotropic glutamate receptors (mGluRs) were found

to be specifically expressed in trigeminal neurons, including Mes V neurons8). Research indicates

that mGluRs on trigeminal motoneurons are involved in burst generation9' and regulation of intrin-

sic and synaptic properties 'O', but little is known about the role of mGluRs in the regulation of the

ionic conductances and cellular excitability ofMes V neurons. Therefore, in the present study, we in-

vestigated the possibility that mGluRs are involved in modulation of Ih in Mes V neurons.

Material and Methods
Preparation oftissue stices

  Coronal brainstem slices containing the mesencephalic trigeminal nucleus were prepared from

tissue obtained from P 2-4 and P 9-12-day-old Sprague-Dawley rats, as described previously3'5-7'.

Briefly, rats were handled according to the policy of The Arnerican Physiological Society regarding

the use and care of animals. Rats were anesthetized by halothane inhalation, the brainstem was

carefu11y removed and immersed in oxygenated ice-cold cutting solution of the following composi-

tion : 126mM NaCl, 3mM KCI, 1.25mM NaH2P04, 26mM NaHC03, 10mM glucose, lmM CaC12, 5
mM MgC12, and 4mM laetic acidi". Coronal sections (thickness, 300pm) were cut with a microslicer

(DSK Microslicer), incubated (40 min at 37Åé ), and immersed in oxygenated incubation solution at

room temperature (22-24Åé).

  The composition ofnormal ACSF was as follows : 124mM NaCl, 3mM KCI, 1.25mM NaH2P04, 26

mM NaHC03, 10mM glucose, 2mM CaC12, and 2mM MgC12. The incubation solution was created by

adding 4mM lactic acid to normal ACSF. In voltage-clamp experiments, to isolate the slow inward

rectifying current (Ih), the recording solution was replaced with various external solutions. The ex-

ternal solution for Ih was similar to that used in a previous study3', and contained the following : 114

mM NaCl, 3mM KCI, 26mM NaHC03, 10mM glucose, 1.5mM CaC12, O.5mM BaC12, 2mM MgC12, 10

mM TEA-Cl, O.lmM CdC12, 2mM 4-aminopyridine (4-AP), and O.OO05mM TTX. NaH2P04 was
omitted from the solution to avoid precipitation. All solutions were equilibrated with 959o 02-59o

C02, and the pH was adjusted to 7.3. The composition of the intrapipette solution was as follows :

115mM K-gluconate, 25mM KCI, 9mM NaCl, 10mM HEPES, O.2mM EGTA, lmM MgC12, 3mM K2
-ATP, and lmM Na-GTP 1. The pH and osmolarity were adjusted to 7.3 and 280 to 290 mOsm, re-

spectively.

  Drugs were used to examine the effects on Ih properties and dissolved in distilled water or di-

methyl sulfoxide (DMSO) as stock solutions. They were then applied via rapid perfusion after stabi-

lization of the peak current amplitude at the following concentrations : IS, 3R-ACPD (Sigma), 20

ptM ; MCPG (Sigma), lmM ; AIDA (Sigma), 300pM ; EGLU (Tocris), 300pM ; DHPG (Sigma), 20

pM ; L-CCG-I (Calbiochem), 20pM ; BAPTA-AM (Sigma), 50pM. The drugs were bath-applied in

the presence ofbicuculline (10pM ; Sigma), strychnine (10pM ; Sigma), DNQX (10pM ; Sigma) and

APV (10pM ; Sigma) to block inhibitory and excitatory ionotropic receptors'O'.

Patch-clamp recordings
  Slow inward rectifying currents (Ih) were recorded using the patch-clamp technique in the whole-
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cell configuration, using an Axopatch-1D patch-clamp amplifier and pCLAMP acquisition software

(Axon instruments, Foster City, CA). Patch-electrodes (tip resistance, 2.5-3.5M9) were fabricated

from thick-walled borosilicate glass (OD, 1.5mm ; ID, O.86mm) (Sutter Instruments P-97, Novato,

CA). Mes V neurons were easily identified by their pseudounipolar soma, using visual control with

infrared differential interference contrast video microscopy, as described elsewhere3'5-7'. All signals

were grounded using a 3M KCI-agar bridge electrode (Ag-AgCl wire), and were fiItered using a low

-pass Bessel filter at 5klIz. Uncompensated series resistance (Rs), which was less than 15M9, was

compensated by 40 to 809o and monitored periodically during the experiments. Liquid junction po-

tentials between bath and pipette solutions for isolation of fast or slow Na currents were approxi-

mately -5mV, and were corrected off-line'2). '

Data analysis
  Voltage and current signals were digitized and recorded using pCLAMP acquisition software (v

8.1, Axon Instruments) for subsequent analysis. In the voltage-clamp experiments, for Ih activation,

the holding potential was initially -55mV, and was hyperpolarized to -140mV using a series of 5-

to 10-mV voltage step commands as previously reported3). In the current-clamp experiments, to de-

termine the effects of each drug on membrane properties, the membrane potential was maintained

at the value of the control conditions, by application of extrinsic current via the recording pipette.

  For frequency-domain analysis, a ZAP input current at frequencies ranging from O to 250Hz was

injected into neurons, and the membrane voltage responses were recorded as described else-

wherei3"`'. We used a low-pass filter at O.5kHz to reduce the noise of the input current. The current

and voltage records were digitized at a frequency of 10kHz. Impedance (Z) was calculated from the

ratio of the Fast Fourier transforms (FFT) of the voltage response and the input current, using the

fo11owing formula : Z = FFT (V) 1 FFT (I).

  The frequency-response curve (FRC) was obtained by plotting frequency against the magriitude of

impedance. When resonant behavior was detected, the resonant frequency (Fres) and the Q value

were measured. The Fres was defined as the frequency at the peak of the hump in the FRC. The Q

value was calculated by measuring the impedance at Fres and dividing that value by the magnitude

of the impedance at the lowest frequency measured '•'5•'6).

  Data analysis was performed using a combination of software : StatView (SAS Institute, Cary,

NC), Sigmaplot 4.0 (Jandel Scientific, San Rafael, CA), DatapacM (v1.61 ; Run Technologies, Irvine,

CA), and Microsoft Excel. Results were reported as mean Å} SE (standard error). The significance of

differences between means was assessed using Student's t test. A probability value of pÅqO.05 was

considered to indicate statistical significance, unless otherwise stated.

 Results
   To avoid sampling bias, the present results were obtained from rat Mes V neurons throughout the

 rostral-caudal extent of the mesencephalic trigeminal nucleus. After establishing the whole-cell

 configuration, cells were held at a membrane potential of -65mV in normal ACSF. Then, a hyperpo-

 larization-activated slow inward current (Ih) was induced in cells in modified ACSF (see Methods).

. In most cells, Ih exhibited a decrease associated with ,the decrease in peak maximal amplitude and

 the shift ofthe activation curve to more hyperpolarized potentials ; the same phenomenon has previ-

 ously been observed for other types of neurons"). The time course and extent of the decrease in Ih

 varied among cells. We periodically monitored the series resistance and peak amplitude of Ih. Subse-
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quent recordings were performed only when the series resistance was relatively small (Åq10Mst) and

there was a small change in the decrease in the peak amplitude ofIh before drug application (Åq 109o).

ACPD reduees Ih in Mes Vneurons.
  Figure IA is a voltage-current (V-I) curve in which the voltage response is plotted as a function of

hyperpolarizing current pulse. In current-elamp recording in normal ACSF, the hyperpolarizing

current pulse exhibited a robust voltage- and time-dependent depolarizing sag, due to the activa-

tion ofIh ; this phenomenon has previously been reported for other types of neurons3'. The difference

between the peak and steady-state voltage responses indicates the magnitude of Ih. Application of 1

S, 3R-ACPD (ACPD ; 20pM) significantly slowed the voltage response and reduced the difference

between the peak and steady-state voltage responses (mean 9o reduction ofvoltage sag, 11.2 Å} 2.09e ;

n = 5), indicating that Ih is negatively modulated by mGluR activation (Fig. IA). Therefore, we per-

formed a series ofvoltage-clamp experiments to investigate the effects of ACPD on Ih characteris-

tics. Figure 1B shows a representative current trace from a P10 Mes V neuron in response to hyper-

polarization from the holding potential (-55mV) to -140mV. The instantaneous current (*) was

measured immediately after the decay of the capacitive transient. The steady-state current ("*) de-

veloped slowly, and was measured near the end of the voltage command. In the presence of ACPD,

the steady-state current was substantially decreased, compared with the control. The effect of

ACPD on the instantaneous current was small, and the difference between the instantaneous and

steady-state currents (representing Ih amplitude) was significantly reduced by ACPD. The effect of
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Figure 1 : mGIuRs activation modulates Ih in Mes V neurons. A : [[[he voltage response evoked by hyperpolarizing current

        pulse reached a peak (-110mV), followed by depolarizing sag in Pll neuron. Application of ACPD (20pM) de-
        creased the amplitude of the sag, indicating inhibition ofIh. B : A representative current trace from another neuron

        evoked by hyperpolarizing voltage step changing the membrane potential from a holding potential of -55mV to -
        140mV. ACPD substantially decreased the steady-state current, but had little effect on the instantaneous current.

        C : ACPD decreased the difference between the instantaneous and steady-state currents (Ih amplitude) in a con-
        centration-dependent manner. D : The ACPD-induced decrease in Ih was developmentally regulated.X: , significant
        difference between older neurons (P 10-12, n = 10) and younger neurons (P2-4, n = 8) (p Åq O.05).
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ACPD on Ih increased as the concentration ofACPD increased (Fig. 1C). Also the mean 9o reduction

of Ih amplitude was greater in older neurons (P10-12, 13.8 Å} 1.19o ; n = 10) than in younger neurons

(P 2-4, 3.3 Å} 1.99o ; n = 8), suggesting postnatal development ofthe modulatory effect ofmGluR acti-

vation on Ih (Fig. 1D). Therefore, we used P10-12 neurons in the following experiments.

The effects orACPD on Ih activation characteristics

  The decrease in Ih amplitude could be due to the decrease in maximal Ih conductance, a shift of the

gating properties ofIh activation, or both. To quantify the effect ofACPD on Ih activation, the older

(P10-12) neurons were subjected to a series ofhyperpolarizing command voltage steps that changed

the membrane potentiat from a holding potential of -55mV to a membrane potential of -140 to -60

mV (Fig. 2A). Tail currents evoked after the membrane potential returned to -75mV were normal-

ized as previously reported3'. As shown in Fig. 2B, the voltage-dependent activation plots of Ih fit

well with the Boltzmann equation in the following form : I/Imax =1/ {1 + exp (Vy2-V)/k}} (Imax,

maximal peak current ; V, applied step command potential ; Vy2, half maximal activation voltage ;

k, slope factor). We observed small but statistically significant hyperpolarizing shifts with half-

maximal activation by ACPD (control, -106.9 Å} 1.lmV ; ACPD, -108.6 Å} 1.2mV ; n=5 ; pÅq O.05).

The Ih conductance (Gh) was calculated using the following equation : Gh = Ih 1 (V-Erev), where V is

applied command potential, Ih is the peak amplitude, and Erev is the measured reversal potential of -

40mV under the experimental conditions. As shown in Fig. 2C, Gh (measured at peak amplitude)

was substantially decreased by ACPD (control, 23.8 Å} 1.4pS ; ACPD, 18.2 Å} 1.6pS ; n = 5 ; p Åq O.05).

  The effect ofACPD on the activation kinetics was further examined using a hyperpolarizing long

step (5s) protocol. The voltage-dependent time course of Ih activation was fitted with 2 time con-
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Figure 2 : Suppression of Ih by mGluRs activation is mediated by a decrease in Ghnax. A : Current responses evoked by hyper-

       polarizing voltage steps changing the membrane potential from a holding potential of -55mV to hyperpolarized po-
       tentials ranging from -140 to -65mV, before and after application ofACPD. Tail currents were observed at -75mV
       after termination ofpulse. B : Boltzman fits ofthe activation curves for controls (open circles) and in the presence of

       ACPD (closed circles), based on tail current analysis. Half-activation value was not shifted by ACPD. C : Applica-
       tion ofACPD significantly reduced the maximal Ih conductance (Ghmax).
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stants under normal conditiohs, as previously reported3'. Application of ACPD significantly slowed

both fast (Tfast) and slow (Tsiow) time constants aS all hyperpolarizing membrane potentials (Vm= -105

mV : Tfast control, 170 Å} 1.6ms ; Tfast ACPD, 210 Å} 2.9ms ; Tsiow control, 1160 Å} 1.7ms ; Tsiow ACPD,

1290 Å} 2.5ms ; n = 5 ; p Åq O.05) (Fig. 3A and B).

Involvement of group U mGluR receptor activation and release of intracellular Ca2" in

ACPD-induced inhibition oflh
  ACPD activates multiple mGluR subtypes, and it is unclear which subtypes are involved in sup-

pressive modulation of Ih. To characterize pharmacologically the specific types of mGluRsi8•i9' that

underlie ACPD-induced modulation of Ih in Mes V neurons, we analyzed the effects of various ago-

nists and antagonists of mGluRs on Ih in another subset of neurons. Figure 4 shows the histogram

representing the mean change in Ih amplitude after application of each agonist and antagonist. As

shown in Fig. 4A, MCPG (lmM), which is a specific antagonist of group I and ll mGluRs, completely

blocked ACPD-induced suppression of Ih (mean 9o reduction, 1.6 Å} 1.39o ; n = 4 ; p Åq O.05). After pre-

incubation with AIDA (300pM), which is a specific antagonist of group I mGluRs, ACPD induced a

modest decrease in the amplitude of Ih (mean reduction, 6.3Å}O.89o;n=5;p=O.23). In contrast,

EGLU (300pM), which is a specific antagonist ofgroup ll mGluRs, antagonized the effeet ofACPD on

Ih (mean reduction, 2.5 Å} 1.59o ; n = 5 ; p Åq O.05). In further experiments, DHPG (20pM), which is a

specific agonist of group I mGluRs, induced a minor decrease in Ih amplitude (mean reduction, 3.5 Å}

1.79o ; n = 6 ; p Åq O.05), and L-CCG-I (20pM), which is a specific agonist of group ll mGluRs, mim-
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       (BA[PTA-AM, 50pM), significantly blocked ACPD-induced suppression of Ih.i , significantly different from data for

       ACPD (pÅqO.05).

icked the effect ofACPD on Ih (mean reduction, 10.2 Å} 1.39o ; n = 7 ; p = O.57) (Fig. 4B).

  Studies indicate that the intracellular Ca2" concentration is involved in modulation of Ih or modu-

lation of other voltage-gated currents by various neurotransmitters in neurons other than Mes V

neurons20-22). Therefore, we further examined the effect of a Ca2' chelator to test whether ACPD-in-

duced reduction of Ih could be modulated by effects on the intracellular Ca2' concentration. We moni-

tored the peak amplitude of Ih after preincubation of BAPTA-AM (50pM), a membrane-permeable

intracellular Ca2' chelator. BAPTA-AM, by itself, showed a modest decrease in the peak amplitude

of Ih (5-79o). We then applied ACPD when the peak amplitude was stabilized. As shown in Fig. 4C,

in the presence of extracellular BAPTA-AM (50pM), the effect ofACPD on the Ih amplitude was sig-

nificantly reduced (mean reduction, 2.8 Å} 2.09o ; n = 5).

Effects ofmGluRs aetivation on resonant behavior
  In a recent studf), Mes V neurons exhibited a low-frequency resonance (Åq 10Hz) at voltages more

negative than the resting potential, allowing them to discriminate between synaptic inputs on the

basis of frequency content. This phenomenon is apparently mediated by Ih activation. Therefore, to

test whether mGluRs activation suppresses resonance via an inhibitory effect on Ih, we examined

the effect of ACPD on resonance using frequency domain analysis. Fig. 5A shows representative ex-

amples of the impedance-frequency relationship in response to ZAP input currents at hyperpolariz-

ing holding potentials of -70 to -80mV. Bath application of ACPD (20ptM) significantly suppressed
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the resonant peak, with significant reduction of the Q-value and Iittle change in the resonant fre-

quency (Fres) in most cells at the same holding potentials (Ehoid= -75mV : control Q-value, 1.75 Å}

O.9 ; ACPD Q-value, 1.20 Å} O.3 ; n=5 ; pÅqO.05 ; control Fres, 4.18 Å} O.3Hz ; ACPD Fres, 3.80 Å} O.8

Hz ; n = 5 ; p = O.95) (Fig. 5B).

Discussion
  The present study is the first detailed analysis of neurotransmitter-mediated modulation of Ih

(hyperpolarization-activated inward current) in Mes V neurons. The present voltage-clamp experi-

ments demonstrate that mGluRs activation suppresses the amplitude of Ih in Mes V neurons. This

effect is dose-dependent and developmentally regulated. In conjunction with the developmental in-

crease in current density of Ih3), despite the increase in soma size, differential immunoreactivity of

mGluRs during postnatal development appears to contribute to the developmental change in ACPD

-induced modulation of Ih in Mes V neurons. Since Mes V neurons demonstrate the developmental

complexity in the spike discharge characteristics such as repetitive spike discharge and intrinsic

bursting activities after postnatal day 67), we focused on clarifying the basic properties and the

neuromodulation ofionic conductances underlying those activities in the following experiments. For

this purpose, we closely examined the aspects of Ih modulation by mGluRs activation using older

aged (P10-12) neurons.

  In the present study, although the activation time constants and the kinetics of Ih were slowed by

mGluRs activation, there was no significant shift in the activation curve (only a decrease in maximal

conductance was observed). These results suggest that ACPD decreased the current density of active
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h-channels, rather than changing their gating propenies. As well as Mes V neurons, dorsal root

ganglion (DRG) neurons also function as primary sensory neurons. DRG neurons, however, consist

of different types of neurons and show heterogeneous expression of Ih23) in contrast to neonatal rat

Mes V neurons3'. Although the modulatory effects of mGluRs activation on Ih properties have not

been clarified in these neurons, past studies revealed that serotonergic activation has excitatory ef-

fects on Ih in DRG neurons23), as opposed to the inhibitory effects in Mes V neurons5'.

Involvement of group UmGluR reeeptor activation and release of intracellular Ca2' in

ACPD-induced inhibition oflh
  In the present study, the effects ofACPD on Ih were specifically blocked by MCPG, indieating that

these effects are nonspecific. Also, the effects of ACPD were mimicked by the group ll -specific

mGluR agonist L-CCG-I, and were significantly blocked by the group ll -specific mGluR antagonist

EGLU. Although we do not preclude the possibility that group I mGluRs play a role in modulation of

Ih, it appears that modulation of Ih by ACPD is mainly mediated by group ll mGluRs. This is not to

suggest that all effects of mGluRs activation on membrane properties of Mes V neurons are medi-

ated by group H mGluRs, because the group M-specific mGluR agonist L-AP4 (20pM) also reduced

Ih (data not shown). These results are consistent with a previous immunohistochemical study, in

which immunoreactivity of group I , ll and M mGluRs was observed in the mesencephalic trigeminal

nucleus ofrats after postnatal day 38).

  In addition, the present study indicate that a minimum concentration of internal Ca2' is required

for normal expression of Ih like cat neocortical neurons20) and ACPD-induced suppression of Ih is re-

duced by a chelation of internal Ca2". Although intemal Ca2" also has indirect effects on activity of

cAMP and PKA2`', Ca2" mobilization is supposed to play an important role in ACPD-induced modula-

tion of Ih in Mes V neurons.

Functional implications orACPD-dependent modulation ofmembrane excitability in Mes

Vneurons. ' .
  Mes V neurons, which are important interneurons due to their unique location in the brainstem,

are critically involved in rhythmical oral motor activities. As previously demonstrated, Ih conduc-

tance contribute to membrane excitability of Mes V neurons by regulating spike discharge charac-

teristics and producing resonant properties at membrane potentials ranging from resting potential

to hyperpolarization9). In particular, resonance would be usefu1 for rapid synchronization and stabili-

zation of coordinated activity within the network. In the present current-clamp study, ACPD sig-

nificantly reduced the frequency-current relationship and Q-value, which is consistent with a de-

crease in Ih. In contrast, the resonant frequency (which determines the spike frequency during the

spike train or bursting activities) showed a smaller shift after ACPD application, compared to the

shift observed in the modulation ofhigh-frequency resonance by 5-HT.

  Many previous in vitro studies have implicated endogenously glutamatergic neurotransmission

via ionotropic receptors in generation of fictive mastication25' and rhythmical trigeminal motor out-

put involving central pattern generation 26). In contrast, endogenous mGluRs activation is not criti-

cally involved in generation of rhythmical jaw movements, and research suggests that trigeminal

motoneurons exert a modulatory effect on synaptic membrane propenies via pre- or post-synaptic

suppression of synaptic transmission between premotoneurons and trigeminal motoneuronsiO). In

addition, monosynaptic excitatory postsynaptic potentials (EPSPs) could be evoked in trigeminal
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motoneurons by focal stimulation of the Mes V nucleus27'. Together, these findings suggest that

modulation of Ih by mGluRs activation could alter the resonant properties of Mes V neurons, thus

changing the frequency preference with which Mes V neurons respond to synaptic inputs. Such

changes may contribute to alteration of motoneuronal excitability and presynaptic alteration of sig-

nal transmission to trigeminal motoneurons.

  Because many other intrinsic neurotransmitters act on the Mes V nucleus, further study is needed

to determine how the effects of various neurotransmitters and neuromodulators on intrinsic and

synaptic membrane properties of Mes V neurons are integrated, especially in certain forms of oral-

motor dysfunction.
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