(Original) Matsumoto Shigaku 27:88~92, 2001

key words : calcium entry - voltage-dependent calcium channel - L-type - MC3T3-E1

Calcium Entry through Voltage–Dependent L–Type Calcium Channels in Preosteoblastic MC3T3–E1 Cells

TOSHIMI HATTORI, HIROSHI MAEHASHI, TOSHIKO MIYAZAWA and MAKOTO NAITO

Department of Dental Pharmacology, Matsumoto Dental University School of Dentistry

Summary

This study was undertaken to confirm that there are voltage-dependent L-type Ca^{2+} channels in osteoblastic MC3T3-E1 cells and that the type of Ca^{2+} channel involved in the Ca^{2+} entry is the L-type. We investigated the effects of a Ca^{2+} -free saline and Bay K 8644, an L-type Ca^{2+} channel activator, on intracellular Ca^{2+} concentration ([Ca^{2+}]i). Although high K⁺ (100 mM) alone raised the [Ca^{2+}]i, high K⁺ did not raise the [Ca^{2+}]i in the absence of extracellular Ca^{2+} . Bay K 8644 (1µM) augmented the high K⁺-induced [Ca^{2+}]i rise. In conclusion, it is confirmed that Ca^{2+} invades through the voltage-dependent L-type Ca^{2+} channels in osteoblastic MC3T3-E1 cells.

Introduction

L-type calcium channels are distributed in both excitatory and non-excitatory organs of the body including muscle, heart, brain¹⁾, lung, kidney, and pancreas²⁾. These channels are modulated by dihydropyridine antagonists such as nifedipine, nicardipine, and nitrendipine. Benzodiazepine such as diltiazem and phenylalkylamine such as verapamil also block the channel. Lieberherr³⁾ observed that the 1,25 (OH)₂D₃- and PTH-induced rapid increase in the intracellular calcium concentration ([Ca²⁺]i) in osteoblasts isolated from the parietal bones of neonatal mice is abolished by the prior addition of EGTA, nifedipine, and verapamil and suggested that L-type Ca²⁺ channels are involved in this Ca²⁺ influx. Yamaguchi *et al*.⁴⁾ also observed that depolarization-activated Ca²⁺ channels and Ba²⁺ entry through the L-type Ca²⁺ channels in osteoblast-like UMR-106 cells. Furthermore, Chesnoy-Marcharis and Fritsch⁵⁾ showed that cells derived from neonatal rat calvaria possess both Tand L-type Ca²⁺ channels. However, they never examined whether or not Bay K 8644, an L-type Ca²⁺ channel activator, enhances the high K⁺-induced [Ca²⁺]i rise and never investigated the effects of a Ca²⁺-free saline containing EGTA.

Thus, the present study was undertaken to confirm that the voltage-dependent L-type Ca²⁺ channels are involved in the Ca²⁺ entry into MC3T3-E1 cells.

松本歯学 27(2)・(3) 2001

Materials and Methods

The materials were osteoblastic MC3T3–E1 cells derived from neonatal mouse calvarial bone, which cells were obtained from the Riken Cell Bank (Japan). The cells were cultured in α –MEM (Gibco, USA) supplemented with 10% fetal bovine serum (Gibco, USA) and in a fully-humidified atmosphere of 95% air and 5% CO₂ at 37°C. Cells were plated on poly–L–lysine–coated cover slips adhered with flexiperm (Heraeus GmbH, Germany) 3–7 days before the experiments. All cells were subconfluent at the time of the experiments⁶. Since alkaline phosphatase activity, as a characteristic of differentiation, begins to rise about 6 days after the start of the culture⁷, the cells used here are considered to be "preosteoblasts" ⁶.

The $[Ca^{2+}]i$ was measured with the Ca^{2+} -sensitive fluorescent dye fura-2. The cells were kept in a solution consisting of 120 mM-NaCl, 5 mM-KCl, 1 mM-CaCl₂, 1 mM-MgCl₂, 10 mM-glucose, 0.1%-bovine serum albumin Fraction V (Gibco, USA), and 10 mM-HEPES-NaOH (pH 7.4)⁸). Changes in the fluorescence intensity of fura-2 in the cells were recorded with a video-imaging analysis system (FC-400, Furusawa Labo Appliance, Japan).

Cells were kept at 32° during fluorescence measurements to minimize leakage of fura-2 from the cells⁹⁾. Depolarization-induced Ca²⁺ influx into the cells was produced by exchanging the normal medium for solutions containing high K⁺ at the concentration of 100 mM. NaCl was isosmotically replaced with KCl. EGTA (1 mM) was added in a Ca²⁺-free saline. Drugs were added to the perfusate at appropriate concentrations.

Fura-2 pentapotassium salt for $[Ca^{2+}]i$ calibration and fura-2/AM were obtained from Dojindo Laboratories (Japan). All other chemicals were from Nacalai Tesque (Japan).

Each value of the data represents the mean value \pm the standard error of the mean and the number of observations (N). Statistical analyses of the data were performed by the Student's 2-sided paired *t*-test. Differences between mean values were considered significant if the probability of error (p) was less than 0.05.

The detailed methods have been described in our previous paper¹⁰.

Results

In order to examine whether or not MC3T3-E1 cells possess voltage-dependent Ca²⁺ channels and to confirm that extracellular Ca²⁺ invades into the cell, we investigated the effect of depolarization of the cell membrane by elevating the extracellular K⁺ concentration and that of a Ca²⁺-free saline on the high K⁺-induced [Ca²⁺] i rise. Fig.1 illustrates the depression of the high K⁺-induced [Ca²⁺] i rise by the Ca²⁺-free saline. That is, although high K⁺ (100 mM) alone raised the [Ca²⁺] i, high K⁺ did not raise the [Ca²⁺] i in the absence of the extracellular Ca²⁺, suggesting the existence of the voltage-dependent Ca²⁺ channels in the cell.

Next, the experiment was performed to determine the type of the Ca²⁺ channels participating in the Ca²⁺ influx. Fig.2 illustrates the effect of Bay K 8644, an L-type Ca²⁺ channel activator. Bay K 8644 (1µM) significantly augmented the high K⁺ (100mM)-induced [Ca²⁺]i rise, implying that the Ca²⁺ entry through the voltage-dependent L-type Ca²⁺ channels occurs.

Discussion

From the results that high K⁺ raised the $[Ca^{2+}]i$ and Ca^{2+} -free depressed it (Fig.1), we confirmed the existence of voltage-dependent Ca^{2+} channels in MC3T3-E1 cells. In contrast, Shoda¹¹⁾ could not observe any high K⁺ (50, 75, 100 mM)-induced $[Ca^{2+}]i$ rise in MC3T3-E1 cells and concluded that there were no voltage-dependent Ca^{2+} channels in these cells. The cause of the difference from our data might be that electromagnetic stimulation in their case had already depolarized the cell before the application of high K⁺ or perhaps the number of experiments was merely too small.

The L-type Ca²⁺ channel agonist (Bay K8644) significantly augmented the high K^{*}-induced [Ca²⁺]i rise (Fig.2). This result indicates that the type of the Ca²⁺ channel participating in the high K^{*}-induced [Ca²⁺]i rise is the L-type but not the N- or T-type.

Duncan *et al*.¹²⁾ proposed that a mechanical strain activated the L-type Ca^{2+} channels in osteoblast-like UMR-106.01 cells. Recently, Meszaros *et al*.¹³⁾ and Liu *et al*.¹⁴⁾ reported that the Ca²⁺ influx in osteoblastic cells (ROS 17/2.8) occurs through the L-type voltage sensitive Ca²⁺ channels. These reports support our interpretation.

In rat femoral explant-derived osteoblasts, Gu *et al*.¹⁵⁾ recently observed that the number of cells possessing T-type Ca^{2+} channels decreased more extensively than that of cells possessing L-type ones with increasing days of sub-culture. Our experiments were performed on cells cultured for 3 and over 3 days. Therefore, it is not surprising that we could not find the T-type Ca^{2+} channels, as we used the cells possessing only a small number of T-type ones.

The findings mentioned above lead us to the conclusion that MC3T3-E1 cells possess the voltagedependent L-type Ca²⁺ channels and that Ca²⁺ invades through the L-type ones under the condition of the membrane depolarization. We speculate that the Ca²⁺ channels may facilitate bone calcification, since the rise in the $[Ca^{2+}]$ is indispensable for accumulation of Ca^{2+} in the matrix vesicle in the osteoblast and their budding them from the cell¹⁶. It is necessary to examine in detail the participation of the Ca^{2+} channels in the formation of the matrix vesicles themselves.

References

- 1) Yukihiro S, Posner GH and Guggino SE (1994) Vitamin D_3 analogs stimulates calcium currents in rat osteosarcoma cells. J Biol Chem **269** : 23889–93.
- Kurihara T and Tanabe T (1998) Voltage-dependent Ca²⁺ channels. Protein Nucleic Acid Enzyme 43: 1579-88.
- 3) Lieberherr M (1987) Effects of vitamin D_3 metabolites on cytosolic free calcium in confluent mouse osteoblasts. J Biol Chem **262**: 13168-73.
- 4) Yamaguchi DT, Green J, Kleeman CR and Muallem S (1989) Properties of the depolarizationactivated calcium and barium entry in osteoblast-like cells. J Biol Chem **264**: 197-204.
- 5) Chesnoy-Marchais D and Fritsch J (1988) Voltage-gated sodium and calcium currents in rat osteoblasts. J Physiol **398**: 291-311.
- Li W, Duncan RL, Karin NJ and Farach-Carson MC (1997) 1,25 (OH)₂D₃ enhances PTH-induced Ca²⁺ transients in preosteoblasts by activating L-type Ca²⁺ channels. Am J Physiol 273 : E 599-E 605.
- 7) Kodama H, Amagai Y, Sudo H, Kasai S and Yamamoto S (1981) Establishment of a clonal osteogenic cell line from newborn mouse calvaria. Jpn J Oral Biol **23**: 899–901.
- Sakai T, Okano Y, Nozawa Y and Oka N (1992) Different protein kinase C isozymes could modulate bradykinin-induced extracellular calcium-dependent and-independent increases in osteoblast-like MC3T3-E1 cells. Cell Calcium 13: 329-40.
- 9) Takemura H, Ohshika H, Yokosawa N, Ogura K and Thastrup O (1991) The thapsigargin-sensitive intracellular Ca²⁺ pool is more important in plasma membrane Ca²⁺ entry than the IP 3-sensitive intracellular Ca²⁺ pool in neuronal cell lines. Biochem Biophys Res Commun 180: 1518-26.
- Hattori T, Maehashi H, Miyazawa T and Naito M (2001) Potentiation by stannous chloride of calcium entry into osteoblastic MC3T3-E1 cells through voltage-dependent L-type calcium channels. Cell Calcium 30: 67-72.
- 11) Shoda K (1997) The effects of pulsing electromagnetic field stimulation on transforming growth factor- β production and intracellular free Ca⁺⁺ of osteoblast-like cells. J Tokyo Med Coll **55** : 297-306.
- 12) Duncan R, Kizer N, Barry ELR, Friedman PA and Hruska KA (1996) Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells. Proc Natl Acad Sci USA 936 : 1864-9.
- Meszaros JG, Karin NJ, Akanbi K and Farach-Carson MC (1996) Down-regulation of L-type Ca²⁺ channel transcript levels by 1,25-dihydrovitamin D₃. J Biol Chem 271: 32981-5.
- 14) Liu R, Li W, Karin NJ, Bergh JJ, Adler-Storthz K and Farach-Carson MC (2000) Ribozyme ablation demonstrates that the cardiac subtype of the voltage-sensitive calcium channel is the molecular transducer of 1,25-dihydroxyvitamin D₃-stimulated calcium influx in osteoblastic cells. J Biol Chem 275: 8711-8.
- 15) Gu Y, Preston MR, Haj AJE, Hamid J, Zamponi GW, Howl J and Publicover SJ (1999) Os-

Hattori et al. : Voltage-Dependent L-Type Ca2+ Channels in MC3T3-E1

teoblasts derived from load-bearing bones of the rat express both L-and T-like voltage-operated calcium channels and mRNA for α_{1C} , α_{1D} and α_{1G} subunits. Pflügers Arch **438**: 553-60.

16) Brighton CT and Hunt RM (1974) Mitochondrial calcium and its role in calcification. Clin Orthop 100: 406-16.

抄録:骨芽細胞様細胞 MC3T3-E1 における電位依存性 L型カルシウムチャネルからのカルシウムの 流入

服部敏己,前橋 浩,宮澤淑子,内藤 真(松本歯大・歯科薬理)

電位依存性 L 型カルシウム (Ca²⁺) チャネルは興奮性細胞,非興奮性細胞を問わず広く分布してい る. 骨芽細胞における Ca²⁺動態は骨形成過程において非常に重要な役割を担っており,細胞外からの Ca²⁺取り込みにはこのチャネルも関与している可能性がある.ここでは材料として骨芽細胞様細胞 MC 3T3-E1を用いて,この細胞に L 型 Ca²⁺チャネルが存在し,それを介して Ca²⁺が流入することを確か めることを目的として実験を行なった.

細胞内 Ca²⁺濃度 ([Ca²⁺]i) の測定は Ca²⁺蛍光指示薬の fura-2/AM を細胞内に負荷し,その蛍光強度の 変化を画像解析することにより行なった.

高 K*灌流液により [Ca²⁺]i は上昇したが, 細胞外液を Ca²⁺-free とした条件下では [Ca²⁺]i 上昇はほ ぼ完全に消失した. Bay K8644 (L型 Ca²⁺チャネル活性化薬) は高 K*による [Ca²⁺]i の上昇を有意に 増大させた.

以上の結果から MC3T3-E1細胞には電位依存性 L 型 Ca²⁺チャネルが存在し,それを介して Ca²⁺流入の起こることが確かめられた.

92